zbMATH — the first resource for mathematics

On the approximation of the elastic bounce problem on Riemannian manifolds. (English) Zbl 0498.58011

37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
53C20 Global Riemannian geometry, including pinching
70F99 Dynamics of a system of particles, including celestial mechanics
PDF BibTeX Cite
Full Text: DOI
[1] Amerio, L, Su un problema di vincoli unilaterali per l’equazione non omogenea Della corda vibrante, IAC (ist. per le applicazioni del calcolo “mauro picone”), pubblicazioni, serie D n∘ 109, 3-11, (1976) · Zbl 0432.73062
[2] Bamberger, A, Etude d’une équation des ondes pénalisées, Rapport interne du centre de mathématiques appliquées de l’ecole polytechnique, (1978), Palaiseau (France)
[3] Boothby, W.M, An introduction to differentiable manifolds and Riemannian geometry, (1975), Academic Press New York · Zbl 0333.53001
[4] Buttazzo, G, Su una definizione generale dei γ-limiti, Boll. un. mat. ital., 14-B, 722-744, (1977) · Zbl 0445.49016
[5] {\scG. Buttazzo and D. Percivale}, Sull’approssimazione del problema del rimbalzo unidimensionale, Ricerche Mat., in press. · Zbl 0508.73024
[6] {\scG. Buttazzo and D. Percivale}, The bounce problem on n-dimensional Riemannian manifolds, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., in press. · Zbl 0498.58011
[7] {\scM. Carriero ad E. Pascali}, Il problema del rimbalzo unidimensionale, to appear. · Zbl 0461.73049
[8] Citrini, C, Controesempi all’unicità del moto di una corda in presenza di una parete, Atti accad. naz. lincei rend. cl. fis. mat. natur., 67, 179-185, (1979) · Zbl 0446.73055
[9] De Giorgi, E, Γ-convergenza e G-convergenza, Boll. un. mat. ital., 14-A, 213-220, (1977) · Zbl 0389.49008
[10] De Giorgi, E; Franzoni, T, Su un tipo di convergenza variazionale, Atti accad. naz. lincei rend. cl. sci. fis. mat. natur., 58, 842-850, (1975) · Zbl 0339.49005
[11] Schatzman, M, Problèmes unilatéraux d’évolution du 2ème ordre en temps, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.