zbMATH — the first resource for mathematics

Sur les \(Z_2\)-extensions d’un corps quadratique imaginaire. (French) Zbl 0501.12016

11R37 Class field theory
11R11 Quadratic extensions
Full Text: DOI Numdam EuDML
[1] E. ARTIN and J. TATE, Class field theory, W. A. Benjamin, New-York (1967). · Zbl 0176.33504
[2] J. E. CARROLL, On determining the quadratic subfields of Z2-extensions of complex quadratic fields, Compositio Mathematica, 30 (1975), 259-271. · Zbl 0314.12005
[3] J. E. CARROLL and H. KISILEVSKY, Initial layers of zl-extensions of complex quadratic fields, Compositio Mathematica, 32 (1976), 157-168. · Zbl 0357.12003
[4] A. CHARIFI, Groupes de torsion attachés aux extensions abéliennes p-ramifiées maximales (cas des corps totalement réels et des corps quadratiques imaginaires), thèse de 3e cycle, Besançon (1982).
[5] G. GRAS, Logarithme p-adique et groupes de Galois, Journal de Crelle, 343 (1983), 64-80. · Zbl 0501.12015
[6] G. GRAS, Groupe de Galois de la p-extension abélienne p-ramifiée maximale d’un corps de nombres, Journal de Crelle, 333 (1982), 86-132. · Zbl 0477.12009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.