×

Asymptotic behaviour and changes of phase in one-dimensional nonlinear viscoelasticity. (English) Zbl 0501.35011


MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L65 Hyperbolic conservation laws
74Hxx Dynamical problems in solid mechanics
35L75 Higher-order nonlinear hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[2] Andrews, G., On the existence and asymptotic behaviour of solutions to a damped nonlinear wave equation, ()
[3] Andrews, G., On the existence of solutions to the equationutt = uxxt + σ(ux)x, J. differential equations, 35, 200-231, (1980)
[4] Antman, S.S., Nonuniqueness of equilibrium states for bars in tension, J. math. anal. appl., 44, 333-349, (1973) · Zbl 0267.73031
[5] Antman, S.S.; Carbone, E.R., Shear and necking instabilities in nonlinear elasticity, J. elasticity, 7, 125-151, (1977) · Zbl 0356.73048
[6] Balakrishnan, A.V., Applied functional analysis, () · Zbl 0333.93051
[7] Ball, J.M., Strongly continuous semigroups, weak solutions, and the variation of constants formula, (), 370-373 · Zbl 0353.47017
[8] Ball, J.M., On the asymptotic behaviour of generalized processes, with applications to nonlinear evolution equations, J. differential equations, 27, 224-265, (1978) · Zbl 0376.35002
[9] Ball, J.M., Strict convexity, strong ellipticity, and regularity in the calculus of variations, (), 501-513 · Zbl 0451.35028
[10] Bolza, O., Lectures on the calculus of variations, (1973), Chelsea New York · JFM 35.0373.01
[11] Dacorogna, B., A generic result for nonconvex problems in the calculus of variations, (1981), to appear
[12] Dafermos, C.M., The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity, J. differential equations, 6, 71-86, (1969) · Zbl 0218.73054
[13] {\scC. M. Dafermos} (1981). To appear.
[14] Dafermos, C.M.; Hsiao, L., Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, (1981), to appear · Zbl 0498.35015
[15] Ekeland, I.; Te´mam, R., Analyse convexe et proble‘mes variationnels, (1974), Dunod/Gauthier-Villars Paris
[16] Ericksen, J.L., Equilibrium of bars, J. elasticity, 5, 191-201, (1975) · Zbl 0324.73067
[17] Federer, H., Geometric measure theory, (1969), Springer-Verlag Berlin · Zbl 0176.00801
[18] Fosdick, R.L.; James, R.D., The elastica and the problem of pure bending for a non-convex stored energy function, (1981), to appear · Zbl 0481.73018
[19] Greenberg, J.M., On the existence, uniqueness, and stability of solutions of the equation ρ_{0}xtt=E(xx)xxx+λxxxt, J. math. anal. appl., 25, 575-591, (1969) · Zbl 0192.44803
[20] Greenberg, J.M.; MacCamy, R.C., On the exponential stability of solutions ofE(ux)uxx + λxtx = ϱutt, J. math. appl., 31, 406-417, (1970) · Zbl 0219.35010
[21] Greenberg, J.M.; MacCamy, R.C.; Mizel, V.J., On the existence, uniqueness, and stability of solutions of the equationσ′(ux) uxx + λuxtx = ϱ0utt, J. math. mech., 17, 707-728, (1968) · Zbl 0157.41003
[22] Hale, J.K., Dynamical systems and stability, J. math. anal. appl., 26, 39-59, (1969) · Zbl 0179.13303
[23] James, R.D., Co-existent phases in the one-dimensional static theory of elastic bars, Arch. rational mech. anal., 72, 99-140, (1979) · Zbl 0429.73001
[24] James, R.D., The propagation of phase boundaries in elastic bars, Arch. rational mech. anal., 73, 125-158, (1980) · Zbl 0443.73010
[25] James, R.D., The equilibrium and post-buckling behaviour of an elastic curve governed by a non-convex energy, J. elasticity, 11, 239-270, (1981) · Zbl 0514.73029
[26] Kazhikov, A.V.; Nikolaev, V.B., On the theory of Navier-Stokes equations of a viscous gas with nonmonotone state function, Soviet math. dokl., 20, 583-585, (1979) · Zbl 0424.35074
[27] Korteweg, D.J., Sur la forme que prennent LES equations du mouvement des fluides si l’on tient compte des forces capillaires par des variations de densite´, Arch. neerland. sci. exact. natur. ser. II, 6, 1-24, (1901) · JFM 32.0756.02
[28] Pazy, A., A class of semilinear equations of evolution, Israel J. math., 20, 23-36, (1975) · Zbl 0305.47022
[29] Segal, I., Nonlinear semigroups, Ann. of math., 78, 334-362, (1962)
[30] Serrin, J.B., Phase transitions and interfacial layers for Van der Waal’s fluids, (), in press · Zbl 0617.76121
[31] Slemrod, M., Admissibility criteria for propagating phase boundaries in a Van der Waal’s fluid, (1981), to appear
[32] Solonnikov, V.A.; Kazhikov, A.V., Existence theorems for the equations of motion of a compressible viscous fluid, Ann. rev. fluid. mech., 13, 79-95, (1981)
[33] Tartar, L., Compensated compactness and partial differential equations, () · Zbl 0437.35004
[34] Truesdell, C.A.; Noll, W., The nonlinear field theories of mechanics, () · Zbl 0779.73004
[35] Wendroff, B., The Riemann problem for materials with non-convex equations of state, J. math. anal. appl., 38, 454-466, (1972) · Zbl 0264.76054
[36] Young, L.C., Lectures on the calculus of variations and optimal control theory, (1969), Saunders Philadelphia · Zbl 0177.37801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.