×

On a maximum principle for matrices, and on conservation of monotonicity. With applications to discretization methods. (English) Zbl 0501.65011


MSC:

65F10 Iterative numerical methods for linear systems
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
15B48 Positive matrices and their generalizations; cones of matrices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] [Russian Text Ignored.] 1977.
[2] ; , An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs 1973.
[3] Collatz, Arch. der Math. 3 pp 365– (1952)
[4] Funktionalanalysis und Numerische Mathematik, Springer, Berlin 1964.
[5] Schröder, Arch. Rat. Mech. Analysis 8 pp 408– (1961)
[6] Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs 1962. · Zbl 0133.08602
[7] ; , Iterative Solution of Nonlinear Equations in Several Variables, Acad. Press, N.Y. 1970.
[8] Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen, Springer, Berlin 1974. · Zbl 0281.47032
[9] Varga, SIAM J. Numer. Analysis 3 pp 355– (1966)
[10] Ciarlét, Aequationes math. 4 pp 338– (1970)
[11] Stieltjes, Acta Math. 9 pp 385– (1887)
[12] Lorenz, Numer. Math. 27 pp 227– (1977)
[13] [Russian Text Ignored.]
[14] [Russian Text Ignored.]
[15] [Russian Text Ignored.]
[16] Birkhoff, Ser. A 5 pp 147– (1946)
[17] Banach Lattices and Positive Operators, Springer, Berlin 1974. · Zbl 0296.47023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.