zbMATH — the first resource for mathematics

Zeros of derivatives of Riemann’s xi-function on the critical line. (English) Zbl 0502.10022
Show Scanned Page MSC:
 11M06 $$\zeta (s)$$ and $$L(s, \chi)$$
Full Text:
References:
  Bombieri, E.Y., A lower bound for the zeros of Riemann’s zeta-function on the critical line, Sem. bourbaki, 469, 176-181, (1975)  Heath-Brown, D.R., Simple zeros of the Riemann zeta-function on the critical line, Bull. London math. soc., 11, 17-18, (1979) · Zbl 0409.10027  Levinson, N., Remarks on a formula of Riemann for his zeta-function, J. math. anal. appl., 41, 345-351, (1973) · Zbl 0252.10042  Levinson, N., At least one-third of zeros of Riemann’s zeta-function are on $$σ = 12$$, (), 1013-1015 · Zbl 0277.10032  Levinson, N., More than one-third of zeros of Riemann’s zeta-function are on $$σ = 12$$, Adv. in math., 13, 383-436, (1974) · Zbl 0281.10017  Levinson, N., Zeros of derivative of Riemann’s ξ-function, Bull. amer. math. soc., 80, No. 5, 951-954, (1974) · Zbl 0289.10027  Levinson, N., Generalization of recent method giving lower bound for N0(T) of Riemann’s zeta-function, (), 3984-3987, No. 10 · Zbl 0287.10024  Levinson, N., Deduction of semi-optional mollifier for obtaining lower bound for N0(T) for Riemann’s zeta-function, (), 294-297, No. 1 · Zbl 0294.10027  Levinson, N., A simplification in the proof that $$N0(T) > (13)N(T)$$ for Reimann’s zeta-function, Adv. in math., 18, 239-242, (1975) · Zbl 0321.10035  Montgomery, H.L.; Vaughan, R.C., Hilbert’s inequality, J. London math. soc. 2, 8, 73-81, (1974) · Zbl 0281.10021  Cheng-Biao, Pan, A simplification of the proof of Levinson’s theorem, Acta math. sinica, 22, 344-353, (1979) · Zbl 0408.10026  Rademacher, H., ()  Siegel, C.L., Uber Riemann’s nachlas zur analytischen zahlentheorie, Quellen stud. geschichte math. astronom. phys. abt. B stud., 2, 45-80, (1932)  Titchmarsh, E.C., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.