×

zbMATH — the first resource for mathematics

Zeros of derivatives of Riemann’s xi-function on the critical line. (English) Zbl 0502.10022

MSC:
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bombieri, E.Y., A lower bound for the zeros of Riemann’s zeta-function on the critical line, Sem. bourbaki, 469, 176-181, (1975)
[2] Heath-Brown, D.R., Simple zeros of the Riemann zeta-function on the critical line, Bull. London math. soc., 11, 17-18, (1979) · Zbl 0409.10027
[3] Levinson, N., Remarks on a formula of Riemann for his zeta-function, J. math. anal. appl., 41, 345-351, (1973) · Zbl 0252.10042
[4] Levinson, N., At least one-third of zeros of Riemann’s zeta-function are on \(σ = 12\), (), 1013-1015 · Zbl 0277.10032
[5] Levinson, N., More than one-third of zeros of Riemann’s zeta-function are on \(σ = 12\), Adv. in math., 13, 383-436, (1974) · Zbl 0281.10017
[6] Levinson, N., Zeros of derivative of Riemann’s ξ-function, Bull. amer. math. soc., 80, No. 5, 951-954, (1974) · Zbl 0289.10027
[7] Levinson, N., Generalization of recent method giving lower bound for N0(T) of Riemann’s zeta-function, (), 3984-3987, No. 10 · Zbl 0287.10024
[8] Levinson, N., Deduction of semi-optional mollifier for obtaining lower bound for N0(T) for Riemann’s zeta-function, (), 294-297, No. 1 · Zbl 0294.10027
[9] Levinson, N., A simplification in the proof that \(N0(T) > (13)N(T)\) for Reimann’s zeta-function, Adv. in math., 18, 239-242, (1975) · Zbl 0321.10035
[10] Montgomery, H.L.; Vaughan, R.C., Hilbert’s inequality, J. London math. soc. 2, 8, 73-81, (1974) · Zbl 0281.10021
[11] Cheng-Biao, Pan, A simplification of the proof of Levinson’s theorem, Acta math. sinica, 22, 344-353, (1979) · Zbl 0408.10026
[12] Rademacher, H., ()
[13] Siegel, C.L., Uber Riemann’s nachlas zur analytischen zahlentheorie, Quellen stud. geschichte math. astronom. phys. abt. B stud., 2, 45-80, (1932)
[14] Titchmarsh, E.C., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.