zbMATH — the first resource for mathematics

Monopoles and geodesics. (English) Zbl 0502.58017

53D50 Geometric quantization
81T08 Constructive quantum field theory
53C80 Applications of global differential geometry to the sciences
83C50 Electromagnetic fields in general relativity and gravitational theory
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14H45 Special algebraic curves and curves of low genus
Full Text: DOI
[1] Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Proc. R. Soc. Lond. A362, 425-461 (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[2] Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Yu.I.: Phys. Lett.65A, 185 (1978)
[3] Atiyah, M.F., Ward, R.S.: Commun. Math. Phys.55, 117 (1977) · Zbl 0362.14004 · doi:10.1007/BF01626514
[4] Bogomolny, E.B.: Sov. J. Nucl. Phys.24, 449 (1976)
[5] Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955 · Zbl 0064.33002
[6] Coppel, W.A.: Stability and asymptotic behaviour of differential equations. Boston: D.C. Heath & Co. 1965 · Zbl 0154.09301
[7] Corrigan, E., Goddard, P.: Commun. Math. Phys.80, 575-587 (1981) · doi:10.1007/BF01941665
[8] Eisenhart, L.P.: A treatise on the differential geometry of curves and surfaces. Boston: Ginn & Co. 1909 · JFM 40.0657.01
[9] Forgacs, P., Horvath, Z., Palla, L.: Phys. Lett.102B, 131 (1981)
[10] Hitchin, N.J.: Proceedings of conference on gauge theories. Primorsko, Bulgaria 1980 (to appear) · Zbl 0436.53058
[11] Nahm, W.: Phys. Lett.90B, 413-414 (1980)
[12] Prasad, M.K., Rossi, P.: MIT preprint CTP 903, 1980
[13] Prasad, M.K., Sommerfield, C.M.: Phys. Rev. Lett.35, 760 (1975) · doi:10.1103/PhysRevLett.35.760
[14] Ward, R.S.: Phys. Lett.61A, 81 (1977)
[15] Ward, R.S.: Commun. Math. Phys.79, 317-325 (1981) · doi:10.1007/BF01208497
[16] Ward, R.S.: Phys. Lett. B (to appear)
[17] Weierstrass, K.: Monatsberichte der Berliner Akademie 612-625 (1866)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.