×

zbMATH — the first resource for mathematics

A conjecture in the arithmetic theory of differential equations. (English) Zbl 0504.12022

MSC:
12H20 Abstract differential equations
12H25 \(p\)-adic differential equations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] CHEVALLEY (C.) . - Théorie Des Groupes De Lie , Groupes algébriques, Théorèmes généraux sur les algèbres de Lie, Hermann, Paris, 1968 . Zbl 0186.33104 · Zbl 0186.33104
[2] DELIGNE (P.) . - Equations Différentielles à Points Singuliers Réguliers , Springer Lecture Notes in Mathematics, No. 163, 1970 . MR 54 #5232 | Zbl 0244.14004 · Zbl 0244.14004 · doi:10.1007/BFb0061194
[3] DELIGNE (P.) . - Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Séminaire Bourbaki 1979 / 1980 , Exposé 543, Springer Lecture Notes in Mathematics No. 842, 1981 , pp. 1-10. Numdam | MR 83f:14026 | Zbl 0478.14008 · Zbl 0478.14008 · numdam:SB_1979-1980__22__1_0 · eudml:109954
[4] FULTON (W.) . - and LAZARSFELD (R.) . - Connectivity and its applications in algebraic geometry , to appear in Proceedings of the Midwest Algebraic Geometry Conference, 1980 ; Springer Lecture Notes in Mathematics. Zbl 0484.14005 · Zbl 0484.14005
[5] KAPLANSKY (I.) . - An Introduction to Differential Algebra , Hermann, Paris, 19 Zbl 0083.03301 · Zbl 0083.03301
[6] KATZ (N.) . - Nilpotent connections and the monodromy theorem - applications of a result of Turritin , Publ. Math. I.H.E.S. No. 39, 1970 , pp. 355-412. Numdam | Zbl 0221.14007 · Zbl 0221.14007 · doi:10.1007/BF02684688 · numdam:PMIHES_1970__39__175_0 · eudml:103909
[7] KATZ (N.) . - Algebraic solutions of differential equations ; p-curvature and the Hodge filtration, Inv. Math. Vol. 18, 1972 , pp. 1-118. MR 49 #2728 | Zbl 0278.14004 · Zbl 0278.14004 · doi:10.1007/BF01389714 · eudml:142177
[8] SAAVEDRA RIVANO (N.) . - Categories Tanakiennes , Springer Lecture Notes in Mathematics, No. 265, 1972 . MR 49 #2769 | Zbl 0241.14008 · Zbl 0241.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.