Spectral behavior of quasi periodic potentials. (English) Zbl 0506.35074


35P05 General topics in linear spectral theory for PDEs
35J10 Schrödinger operator, Schrödinger equation
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
47A10 Spectrum, resolvent
Full Text: DOI


[1] Aubry, S., Anré, G.: In:Colloquium on group theoretical methods in physics, Kiryat Anavim, Israel, 1979
[2] Avron, J., Simon, B.: Almost periodic Hill’s Equation and the rings of Saturn. Preprint (Cal. Tech.), 1981 · Zbl 0484.35069
[3] Avron, J., Simon, B.: Cantor spectrum and limit periodic potentials. Preprint (Cal. Tech.), 1981 · Zbl 0484.35069
[4] Goldshtein, Ya., Molchanov, S.A., Pastur, L.A.: Funct. anal.11 1 (1977) · Zbl 0368.34015
[5] Herstein, I. N.: Topics in Algebra, New York: Blaisdell, 1964. · Zbl 0122.01301
[6] Moser, J.: An Example of a Schrödinger Equation with almost periodic potential and Nowhere Dense Spectrum, E.T.H., Zürich, preprint, 1980
[7] Moser, J.: Stable and random motions in dynamical system. Princeton Lecture Series11, Princeton, N.S.: Princeton Univ. Press, 1973 · Zbl 0271.70009
[8] Reed, M., Simon, B.: Methods of mathematical physics, Vol. 4., New York: Academic Press 1978 · Zbl 0401.47001
[9] Sinai, Ya., Dinaburg, E.: Funct. Anal. Appl.9 279 (1976) · Zbl 0333.34014
[10] Thouless, D. J.: Phys. Rep. (Section C of Phys. Lett.)13 No. 3, 93-142 (1974)
[11] Katznelson, Y.: Israel J. Math.33 1 1-4 (1979) · Zbl 0424.28004
[12] Meyer, Y.: Algebraic numbers and harmonic analysis, p. 16. Amsterdam: North-Holland 1972
[13] Gordon, A. Ya.: SUP. Math. Nauk31 257 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.