×

zbMATH — the first resource for mathematics

State consensus for multi-agent systems with switching topologies and time-varying delays. (English) Zbl 1330.94022
Summary: We investigate state consensus problems for discrete-time multi-agent systems with changing communications topologies and bounded time-varying communication delays. The analysis in this paper is based on the properties of non-negative matrices. We first extend the model of networks of dynamic agents to the case with multiple time-delays and prove that if the communication topology, time-delays, and weighting factors are time-invariant, then the necessary and sufficient condition that the multi-agent system solves a consensus problem is that the communication topology, represented by a directed graph, has spanning trees. Then we allow for dynamically changing communication topologies and bounded time-varying communication delays, and present some sufficient conditions for state consensus of system. Finally, as a special case of our model, the problem of asynchronous information exchange is also discussed.

MSC:
94A14 Modulation and demodulation in information and communication theory
93C05 Linear systems in control theory
93C25 Control/observation systems in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chu T, Proc. Amer. Control Conf pp 3474– (2005)
[2] Fang L, Proc. Amer. Control Conf pp 1883– (2005) · doi:10.1109/ACC.2005.1470243
[3] Godsil C, Algebraic Graph Theory (2001) · doi:10.1007/978-1-4613-0163-9
[4] Hatano Y, IEEE Trans. Autom. Control 50 pp 1867– (2005) · Zbl 1365.94482 · doi:10.1109/TAC.2005.858670
[5] Horn RA, Matrix Analysis (1985)
[6] Jadbabaie A, IEEE Trans. Autom. Control 48 pp 988– (2003) · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[7] Moreau L, Proc. IEEE Conf. Decision and Control pp 3998– (2004)
[8] Moreau L, IEEE Trans. Autom. Control 50 pp 169– (2005) · Zbl 1365.93268 · doi:10.1109/TAC.2004.841888
[9] Mu S, Physica A 351 pp 211– (2005) · doi:10.1016/j.physa.2004.12.054
[10] Olfati-Saber R, IEEE Trans. Autom. Control 49 pp 1520– (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[11] Olfati-Saber R, Proc. IEEE Conf. Decision and Control pp 6698– (2005) · doi:10.1109/CDC.2005.1583238
[12] Ren W, IEEE Trans. Autom. Control 50 pp 655– (2005) · Zbl 1365.93302 · doi:10.1109/TAC.2005.846556
[13] Ren W, Proc. Amer. Control Conf pp 1859– (2005) · doi:10.1109/ACC.2005.1470239
[14] Shi H, Journal of Control Theory and Applications 2 pp 313– (2004) · doi:10.1007/s11768-004-0034-6
[15] Shi H, Physica D 213 pp 51– (2006) · Zbl 1131.93354 · doi:10.1016/j.physd.2005.10.012
[16] Spanos DP, IFAC World Congress (2005)
[17] Tanner HG, Proc. IEEE Conf. Decision and Control pp 4945– (2005) · doi:10.1109/CDC.2005.1582945
[18] Vicsek T, Phys. Rev. Lett. 75 pp 1226– (1995) · doi:10.1103/PhysRevLett.75.1226
[19] Wang L, Lecture Notes in Artificial Intelligence 3339 pp 766– (2004)
[20] Wolfowitz J, Proc. Amer. Mathematical Soc. 15 pp 733– (1963) · doi:10.1090/S0002-9939-1963-0154756-3
[21] Xiao F, Physica A (2006)
[22] Xiao F, J. Mathematical Analysis and Applications (2005)
[23] Xiao F, Proc. IEEE International Symposium on Intelligent Control pp 622– (2005)
[24] Xie G, Lecture Notes in Computer Science 3612 pp 424– (2005) · doi:10.1007/11539902_51
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.