×

zbMATH — the first resource for mathematics

Moment problems and low rank Toeplitz approximations. (English) Zbl 0507.65011

MSC:
65F30 Other matrix algorithms (MSC2010)
44A60 Moment problems
15A63 Quadratic and bilinear forms, inner products
PDF BibTeX Cite
Full Text: DOI
References:
[1] R. Bartels, G.H. Golub, and C. van Loan, Applied Matrix Computations, manuscript, to be published by Johns Hopkins University Press.
[2] G. Cybenko,The numerical stability of the Levinson-Durbin algorithm for Toeplitz systems of equations, SIAM J. Sci. Stat. Comput., 1 (1980), pp. 303–319. · Zbl 0474.65026
[3] G. Cybenko, Affine minimax problems and semi-infinite programming, submitted to Mathematical Programming. · Zbl 0507.65011
[4] B.W. Dickinson,Two-dimensional Markov spectrum estimates need not exist, IEEE Trans. Information Sci., 26 (1980), pp. 120–121.
[5] J. Durbin,The fitting of time-series models, Rev. Int. Inst. Statist., 28 (1960) pp. 233–243. · Zbl 0101.35604
[6] G.H. Golub and V. Pereyra,The differentiation of pseduo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Num. Anal., 10 (1973), pp. 413–432. · Zbl 0258.65045
[7] W.B. Gragg, Positive definite Toeplitz matrices, the Hessenberg process for isometric operators, and Gaussian quadrature on the unit circle, to appear, in Russian, in Sbornik Moscow State University. · Zbl 0554.65027
[8] U. Grenender and G. Szegö,Toeplitz Forms and their Applications, University of California Press, Berkeley, 1958.
[9] S.Y. Kung, A Toeplitz approximation method and some applications, International Symposium on Mathematical Theory of Networks and Systems, Santa Monica, California, August 1981.
[10] N. Levinson,The Weiner RMS (root mean square) error criterion in filter design and prediction, J. Math. Phys., 45 (1947), pp. 261–278.
[11] J. Makhoul,Linear prediction: a tutorial review, Proc. IEEE, 63 (1975), pp. 561–580.
[12] V.F. Pisarenko,The retrieval of harmonics from a covariance function, Geophysics J.R. Astr. Soc., 33 (1973) pp. 347–366. · Zbl 0287.62048
[13] L.R. Rabiner and R. Schafer,Digital Processing of Speech Signals, Prentice Hall, Englewood Cliffs, 1978. · Zbl 1162.94003
[14] W.W. Rogosinski,Moments of non-negative mass, Proc. Roy. Soc. (London), Series A, 245 (1958) pp. 1–27. · Zbl 0082.32404
[15] W. Rudin,Fourier Analysis on Groups, Wiley Interscience, New York, 1960. · Zbl 0099.32201
[16] W. Rudin,The extension problem for positive-definite functions, Ill J. Math., 7 (1963), pp. 532–539. · Zbl 0114.31003
[17] G.W. Stewart,A modification of Davidon’s minimization method to accept difference approximations of derivatives, J. Assoc. Comp. Mach., 14 (1967) pp. 72–83. · Zbl 0239.65056
[18] V.M. Tschakaloff,Formules de cubature méchanique à coefficients non négatifs, Bull. Sci. Math., 81 (1957), pp. 123–134.
[19] S.W. Lang and J.H. McClellan,Spectral estimation for sensor arrays, Proceedings of First ASSP Workshop in Spectral Estimation, Hamilton, Ontario, August 17–18, 1981, pp. 3.2.1–3.2.7.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.