×

On filters and filter congruences in semilattices. (English) Zbl 0508.06006

MSC:

06A12 Semilattices
06B10 Lattice ideals, congruence relations
06C99 Modular lattices, complemented lattices
06D99 Distributive lattices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] P. V. Ramana Murty andM. Krishna Murty:On Modular semilattices. Journal of Pure and Applied Mathematika Sciences. Vol. 4. pp. 134–140 (1976). · Zbl 0355.06011
[2] William H. Cornish:Pseudocomplemented Modular Semilattices. J. Austral. Math. Soc. Vol. 18 pp. 239–251 (1974). · Zbl 0312.06006
[3] T. P. Speed,Some remarks on a class of distributive lattices. J. Austral. Math. Soc. Vol. IX Parts 3–4, pp. 289–296 (1969). · Zbl 0175.01303
[4] T. Katriňák,Die Kennzeichnung der distributiven pseudokomplementaren Halbverbande, J. reine und angewandte Math.241 (1970), 160–179. · Zbl 0192.33503
[5] P. Mederly,A characterization of modular pseudocomplemented semilattices, Coloq. Math. Soc. J. Oolyai14 (1974), 231–248. · Zbl 0364.06008
[6] O. Frink, Pseudocomplements in semilattices, Duke Math. J. 29 (1962), 505–514. · Zbl 0114.01602
[7] G. Grätzer: General Lattice Theory, Birkhauser Verlag, 1978. · Zbl 0436.06001
[8] T. Katriňák andP. Mederly: Construction of modularp-algebras, Algebra Univ. 4 (1974), 301–315. · Zbl 0316.06005
[9] Joe B.Rhodes: Modular and distributive semilattices. Trans. Amer. Math. Soc., Vol 201, pp 31–41 (1975). · Zbl 0326.06006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.