zbMATH — the first resource for mathematics

Discrete approximations to spherically symmetric distributions. (English) Zbl 0508.65012

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
Full Text: DOI EuDML
[1] Calder, A.C., Laframboise, J.G., Stauffer, A.D.: Optimum step-function approximation of the Maxwell distribution (unpublished)
[2] Galant, D.: Gauss quadrature rules for the evaluation of \(2\pi ^{ - \tfrac{1}{2}} \int\limits_0^\infty {\exp ( - x^2 )f(x)dx} \) . Math. Comput.23 (1969), Review42, 676-677. Loose microfiche suppl. E · doi:10.2307/2004399
[3] Galant, D.: An implementation of Christoffel’s theorem in the theory of orthogonal polynomials. Math. Comput.25, 111-113 (1971) · Zbl 0219.65017
[4] Gautschi, W.: A survey of Gauss-Christoffel quadrature formulae. In: E.B. Christoffel, The Influence of his Work on Mathematics and the Physical Sciences (P.L. Butzer, F. Feh?r, eds.), pp. 72-147. Basel: Birkh?user 1981 · Zbl 0479.65001
[5] Gautschi, W.: On generating orthogonal polynomials. SIAM J. Sci. Statist. Comput.3, 289-317 (1982) · Zbl 0482.65011 · doi:10.1137/0903018
[6] Gautschi, W.: An algorithmic implementation of the generalized Christoffel theorem. In: Numerische Integration (G. H?mmerlin, ed.), pp. 89-106. Intern. Ser. Numer. Math. 57. Basel: Birkh?user 1982 · Zbl 0518.65006
[7] Gautschi, W., Milovanovi?, G.V.: Gaussian quadrature involving Einstein and Fermi functions with an application to convergence acceleration of series, submitted for publication. · Zbl 0576.65012
[8] Hildebrand, F.B.: Introduction to Numerical Analysis, 2nd ed., New York: McGraw-Hill 1974 · Zbl 0279.65001
[9] Laframboise, J.G., Stauffer, A.D.: Optimum discrete approximation of the Maxwell distribution. AIAA Journal7, 520-523 (1969) · doi:10.2514/3.5139
[10] Szeg?, G.: Orthogonal Polynomials, AMS Colloq. Publications, Vol.23, 4th ed. 2nd printing. Providence, R.I.: Amer. Math. Soc. 1978 · JFM 65.0278.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.