zbMATH — the first resource for mathematics

Linear feedback systems and the groups of Galois and Lie. (English) Zbl 0509.93049

93D15 Stabilization of systems by feedback
93C05 Linear systems in control theory
12E05 Polynomials in general fields (irreducibility, etc.)
22E60 Lie algebras of Lie groups
Full Text: DOI
[1] Evans, W.R., Graphical analysis of control systems, Trans. AIEE, 67, 547-551, (1948)
[2] Brockett, R.W.; Rahimi, A., Lie algebras and linear differential equations, (), 379-386
[3] Brockett, R.W., The Lie groups of simple feedback systems, IEEE decision and control conference, 1189-1193, (1976)
[4] Brockett, R.W., Lie algebras and rational functions: some control theoretic connections, (), 268-280
[5] Brockett, R.W., Polynomials, bilinear forms, and representations of Lie algebras, (), 1-6, AMS Lectures on Applied Mathematics
[6] Cartan, E., LES groupes de transformations continus, infinis, simples, Ann. √©cole norm. sup., 26, 93-161, (1909) · JFM 40.0193.02
[7] Kobayashi, S.; Nagumo, T., On filtered Lie algebras and geometric structures, J. math. and mech., 4, 679-706, (1965) · Zbl 0163.28103
[8] Singer, I.M.; Sternberg, S., On the infinite groups of Lie and Cartan, I, J. analyse math., XV, 1-114, (1965) · Zbl 0277.58008
[9] Guillemin, V.W.; Quillen, D.; Sternberg, S., The classification of the irreducible complex algebras of the infinite type, J. analyse math., 18, 107-112, (1967) · Zbl 0153.05903
[10] Kostant, B., A characterization of the classical groups, Duke math. J., 25, 107-123, (1951) · Zbl 0079.04301
[11] Byrnes, C.I.; Stevens, P.K., Global properties of the root-locus map, (), Lecture Notes in Information and Control · Zbl 0479.93021
[12] Adler, M.; van Moerbeke, P., Completely integrable systems, Euclidean Lie algebras, and curves, Adv. in math., 39, 267-317, (1980) · Zbl 0455.58017
[13] Jacobson, N., Basic algebra 1, (1974), Freeman San Francisco
[14] S. Friedland, Simultaneous similarity of matrices, Advances in Math, to appear. · Zbl 0527.15005
[15] Freudenthal, H., Elementarteilertheorie der komplexen orthognalen und symplektischen gruppen, Nederl. akad. wetensch. indag. math., 14, 99-101, (1952)
[16] Harris, J., Galois groups of enumerative problems, Duke math. J., 46, 685-724, (1979) · Zbl 0433.14040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.