×

zbMATH — the first resource for mathematics

On some existence and uniqueness results in contact problems with nonlocal friction. (English) Zbl 0511.73122

MSC:
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74G30 Uniqueness of solutions of equilibrium problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[2] Aubin, J.P., Approximation of elliptic boundary-value problems, (1972), Wiley-Interscience New York
[3] Choquet-Bruhat, Y.; Dewitt-Morette, C.; Dillard-Bleick, M., Analysis, manifolds and physics, (1977), North-Holland Publishing Company Amsterdam · Zbl 0385.58001
[4] Day, M.M., Normed linear spaces, (1958), Springer-Verlag Berlin · Zbl 0082.10603
[5] Duvaut, G., Equilibre d’un solide élastique avec contact unilatéral et frottement de Coulomb, C. r. hebd. Séanc. acad. sci. Paris, 290A, 263-265, (February 1980)
[6] Duvaut, G.; Lions, J.L., Inequalities in mechanics and physics, (1976), Springer Berlin · Zbl 0331.35002
[7] Ekeland, I.; Teman, R., Convex analysis and variational problems, (1976), North-Holland Amsterdam
[8] Kikuchi, N.; Oden, J.T., Contact problems in elasticity, () · Zbl 0685.73002
[9] Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their applications, (1980), Academic Press New York · Zbl 0457.35001
[10] Lions, T.L., Quelques Méthodes de Résolution des problémes aux limites non-linéaires, (1969), Dunod Gauthier-Villars Paris · Zbl 0189.40603
[11] J., J. & \scHaslinger T., On the Solution of the Variational Inequality to the Signorini Problem with Small Friction. (to be published). · Zbl 0445.49011
[12] Showalter, R.E., A Green’s formula for weak solutions of variational problems, Applied nonlinear analysis, 381-387, (1979) · Zbl 0466.35019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.