×

zbMATH — the first resource for mathematics

The elementary theory of large e-fold ordered fields. (English) Zbl 0513.12020

MSC:
12J15 Ordered fields
11U05 Decidability (number-theoretic aspects)
12E99 General field theory
03C68 Other classical first-order model theory
12D15 Fields related with sums of squares (formally real fields, Pythagorean fields, etc.)
03B25 Decidability of theories and sets of sentences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chang C. C. &Keisler, H. J.,Model theory, North-Holland, Amsterdam, 1973. · Zbl 0276.02032
[2] Frey, G., Pseudo algebraically closed fields with non-archimedean real valuations.J. Algebra, 26 (1973), 202–207. · Zbl 0264.12105
[3] Frey, G. &Jarden M., Approximation theory and the rank of abelian varieties over large algebraic fields.Proc. London Math. Soc., 28 (1974), 112–128. · Zbl 0275.14021
[4] Fried, M. &Jarden, M., Stable extensions and fields with the global density property.Canad. J. Math., 28 (1976), 774–787. · Zbl 0337.12102
[5] Geyer, W.-D., Galois groups of intersections of local fields.Israel J. Math., 30 (1978), 383–396. · Zbl 0383.12014
[6] Jacobson, N.,Lectures in abstract algebra, III. D. Van Nostrand, Princeton, 1964. · Zbl 0124.27002
[7] Jarden, M., Elementary statements over large algebraic fields,Trans. Amer. Math. Soc., 164 (1972), 67–91. · Zbl 0235.12104
[8] –, Algebraic extensions of finite corank of Hilbertian fields.Israel J. Math., 18 (1974), 279–307. · Zbl 0293.12101
[9] –, Roots of unity over large algebraic fields.Math. Ann., 213 (1975), 109–127. · Zbl 0288.12102
[10] Jarden, M. &Kiehne, U., The elementary theory of algebraic fields of finite corank.Invent. Math., 30 (1975), 275–294. · Zbl 0315.12107
[11] Lang, S.,Algebra, Addison-Wesley, Reading Massachusetts, 1971.
[12] –,Diophantine geometry. Interscience, New York 1962.
[13] McKenna, K., Pseudo-Henselian and pseudo real closed fields. A manuscript.
[14] Prestel, A. &Ziegler, M., Model theoretic methods in the theory of topological fields.Crelles Journal, 299/300 (1978), 318–341. · Zbl 0367.12014
[15] Ribenboim, P.,L’arithmétique des corps. Hermann, Paris, 1972. · Zbl 0253.12101
[16] Ribes, L.,Introduction to profinite groups and Galois cohomology. Queen’s University, Kingston, Ontario, 1970. · Zbl 0221.12013
[17] Schuppar, B., Elementare Aussagen zur Arithmetik und Galois-theorie von Funktionenkörpern.Crelles Journal, 313 (1980), 59–71. · Zbl 0423.12015
[18] Van den dries, L. P. D.,Model Theory of fields. Ph.D. Thesis. Utrecht, 1978. · Zbl 0986.03034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.