×

zbMATH — the first resource for mathematics

Computable single-valued numerations. (English. Russian original) Zbl 0514.03029
Algebra Logic 19, 325-356 (1981); translation from Algebra Logika 19, 507-551 (1980).

MSC:
03D45 Theory of numerations, effectively presented structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yu. L. Ershov, The Theory of Numerations [in Russian], Nauka, Moscow (1977).
[2] A. I. Mal’tsev, Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1965).
[3] S. S. Marchenkov, ”On computable numerations of families of general recursive functions,” Algebra Logika,11, No. 5, 588–607 (1972).
[4] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill (1967). · Zbl 0183.01401
[5] A. B. Khutoretskii, ”Two existence theorems for computable numerations,” Algebra Logika,8, No. 4, 483–492 (1969).
[6] A. I. Mal’tsev, ”Positive and negative numerations,” Dokl. Akad. Nauk SSSR,160, No. 2, 278–280 (1965).
[7] A. B. Khutoretskii, ”On reducibility of computable numerations,” Algebra Logika,8, No. 2, 251–264 (1969).
[8] R. M. Friedberg, ”Three theorems on recursive enumeration,” J. Symb. Logic,23, No. 3, 309–316 (1958). · Zbl 0088.01601
[9] M. B. Pour-el ”Gödel numberings versus Friedberg numberings,” Proc. Am. Math. Soc.,15, No. 2, 252–255 (1964). · Zbl 0168.25404
[10] M. B. Pour-el and W. A. Howard, ”A structural criterion for recursive enumeration without repetition,” Z. Math. Logik Grundl. Math.,10, No. 2, 105–114 (1964). · Zbl 0132.24703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.