zbMATH — the first resource for mathematics

Dilogarithms, regulators and \(p\)-adic \(L\)-functions. (English) Zbl 0516.12017

11S40 Zeta functions and \(L\)-functions
11S70 \(K\)-theory of local fields
30G06 Non-Archimedean function theory
33B30 Higher logarithm functions
14G20 Local ground fields in algebraic geometry
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
19C99 Steinberg groups and \(K_2\)
Full Text: DOI EuDML
[1] Be. Beilenson, A.A.: Letter to Bloch
[2] B. Bloch, S.: Higher Regulators, AlgebraicK-theory, and Zeta Functions of Elliptic Curves (unpublished notes)
[3] C. Coleman, R.: The dilogarithm and the norm residue symbol. Bull. Soc. Math. France in press (1982) · Zbl 0493.12019
[4] D. Dwork, B.: Onp-Adic Differential Equations I, the Frobenius Structure of Differential Equations. Mémoires de la Societé mathemqtique de France9-40, 27-37 (1974)
[5] G. Goss, D.: Appendix to ?-adic Eisenstein Series for Function Fields (Harvard Ph.D. Thesis 1978)
[6] Gr. Grauert, H.: Affinoide Uberdeckungen Eindimensionaler Affinoider Räume. IHES Publications Mathématiques34, 5-35 (1968) · Zbl 0197.17302
[7] Gro. Gross, B.: On the values of ArtinL-functions. (Unpublished notes)
[8] K. Katz, N.: Travaux de Dwork. Séminaire Bourbaki409, 1-34 (1972)
[9] Ko. Koblitz, N.: A New proof of Certain Formulas forp-adicL-functions. Duke Math. J.2, 455-468 (1979) · Zbl 0409.12028
[10] R. Rogers, L.J.: On Function Sum Theorems Connected with the series \(\sum\limits_{n = 1}^\infty {\frac{{x^n }}{{n^2 }}}\) . Proc. London Math. Soc.4, 169-189 (1906) · JFM 37.0428.03
[11] S. Sandham, H.F.: A Logarithmic Transcendent. J. London Math. Soc.24, 83-91 (1949) · Zbl 0036.32501
[12] T. Tate, J.: Rigid Analytic Spaces. Invent. Math.12, 257-289 (1971) · Zbl 0212.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.