×

zbMATH — the first resource for mathematics

Standard completions for quasiordered sets. (English) Zbl 0517.06009

MSC:
06B23 Complete lattices, completions
06A15 Galois correspondences, closure operators (in relation to ordered sets)
06D10 Complete distributivity
06A06 Partial orders, general
PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] R. BALBES and Ph. DWINGER: Distributive lattices. University of Missouri Press, Columbia, Mo., 1974.
[2] V. K. BALACHANDRAN: A characterization of {\(\Sigma\)}{\(\Delta\)}-rings of subsets. Fund. Math. 41 (1954), 38–41. · Zbl 0055.28001
[3] B. BANASCHEWSKI: Hüllensysteme und Erweiterung von Quasi-Ordnungen. Zeitschr. für math. Logik und Grundlagen der Math. 2 (1956), 117–130. · Zbl 0073.26904
[4] H.-J. BANDELT and M. ERNÉ: Representations and embeddings ofM-distributive lattices. Houston J. Math. (to appear).
[5] G. BIRKHOFF: Lattice theory. AMS Colloquium Publ. Vol. 25, 3d ed., Rhode Island, 1967. · Zbl 0153.02501
[6] A. BISHOP: A universal mapping property for a lattice completion. Algebra Universalis 6 (1976), 81–84. · Zbl 0334.06003
[7] G. BRUNS: Darstellungen und Erweiterungen geordneter Mengen I/II. J. Reine Angew. Math. 209 (1962), 167–200; ibid. 210 (1962), 1–23. · Zbl 0148.01202
[8] J. R. BÜCHI: Representations of complete lattices by sets. Portugal. Math. 11 (1952), 151–167. · Zbl 0048.02202
[9] P. CRAWLEY: Regular embeddings which preserve lattice structure. Proc. AMS 13 (1962), 748–752. · Zbl 0112.01803
[10] M. ERNÉ: Scott convergence and Scott topology in partially ordered sets II. In: Continuous lattices; Proceedings Bremen 1979, Lecture Notes in Math. 871, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
[11] M. ERNÉ: Distributivgesetze und Dedekind’sche Schnitte. Festschrift der Braunschweig. Wiss. Ges. zum 150. Geburtstag Richard Dedekinds, Braunschweig (to appear).
[12] O. FRINK: Ideals in partially ordered sets. Am. Math. Monthly 61 (1954), 223–234. · Zbl 0055.25901
[13] O. FRINK: Pseudo-complements in semi-lattices. Duke Math. J. 29 (1962), 505–514. · Zbl 0114.01602
[14] G. GIERZ, K. H. HOFMANN, K. KEIMEL, J. D. LAWSON, M. MISLOVE, D. S. SCOTT: A compendium of continuous lattices. Springer-Verlag, Berlin-Heidelberg-New York, 1980. · Zbl 0452.06001
[15] V. GLIVENKO: Sur quelques points de la logique de M. Brouwer. Bull. Acad. Sci. Belgique 15 (1929), 183–188. · JFM 55.0030.05
[16] G. GRÄTZER: General lattice theory. Birkhäuser Verlag, Basel-Stuttgart, 1978. · Zbl 0436.06001
[17] R.-E. HOFFMANN: Sobrification of partially ordered sets. Semigroup Forum 17 (1979), 123–138. · Zbl 0402.54035
[18] R.-E. HOFFMANN: Continuous posets, prime spectra of completely distributive lattices and Hausdorff compactifications. In: Continuous lattices, Proceedings Bremen 1979, Lecture Notes in Math. 871, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
[19] T. KATRIŇÁK: Pseudokomplementäre Halbverbände. Mat. casopis 18 (1968), 121–143. · Zbl 0164.00701
[20] O. ORE: Combinations of closure relations. Ann. of Math. 44 (1943), 514–533. · Zbl 0060.06203
[21] G. N. RANEY: Completely distributive complete lattices. Proc. AMS 3 (1952), 677–680. · Zbl 0049.30304
[22] G. N. RANEY: A subdirect-union representation for completely distributive complete lattices. Proc. AMS 4 (1953), 518–522. · Zbl 0053.35201
[23] J. SCHMIDT: Einige grundlegende Begriffe und Sätze aus der Theorie der Hüllenoperatoren. Ber. Math. Tagung Berlin (1953), 21–48. · Zbl 0052.02603
[24] J. SCHMIDT: Every join-completion is the solution of a universal problem. J. Austral. Math. 17 (1974), 406–413. · Zbl 0304.06003
[25] R. SIKORSKI: Boolean algebras. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. · Zbl 0087.02503
[26] M. H. STONE: The theory of representations for Boolean algebras Trans. AMS 40 (1936), 37–111.
[27] P. V. VENKATANARASIMHAN: Pseudo-complements in posets. Proc. AMS 28 (1971), 9–15.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.