×

zbMATH — the first resource for mathematics

A characterization of ternary rings of operators. (English) Zbl 0517.46049

MSC:
46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
17A40 Ternary compositions
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
47L05 Linear spaces of operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Busby, R.C, Double centralizers of C∗-algebras, Trans. amer. math. soc., 132, 79-99, (1968) · Zbl 0165.15501
[2] Hestenes, M.R, A ternary algebra with applications to matrices and linear transformations, Arch. rational mech. anal., 11, 138-194, (1962) · Zbl 0201.37001
[3] Hestenes, M.R, Relative self-adjoint operators in Hilbert space, Pacific J. math., 11, 1315-1357, (1961) · Zbl 0171.34601
[4] Kaplansky, I, Modules over operator algebras, Amer. J. math., 75, 839-858, (1953) · Zbl 0051.09101
[5] Paschke, W.L, Inner product modules over B∗-algebras, Trans. amer. math. soc., 182, 443-468, (1973) · Zbl 0239.46062
[6] Paschke, W.L, Inner product modules arising from compact automorphism groups of von Neumann algebras, Trans. amer. math. soc., 224, 87-102, (1976) · Zbl 0339.46048
[7] Rieffel, M.A, Induced Banach representations of Banach algebras and locally compact groups, J. funct. anal., 1, 443-491, (1967) · Zbl 0181.41303
[8] Rieffel, M.A, Induced representations of C∗-algebras, Advan. in math., 13, 176-257, (1974) · Zbl 0284.46040
[9] Sakai, S, C∗-algebras and W∗-algebras, (1971), Springer Berlin/New York · Zbl 0219.46042
[10] Smiley, M.F, An introduction to hestenes ternary rings, Amer. math. monthly, 76, 245-248, (1969) · Zbl 0175.02601
[11] Stephenson, R.A, Jacobson structure theory for hestenes ternary rings, Trans. amer. math. soc., 177, 91-98, (1973) · Zbl 0274.16006
[12] Taylor, D.C, The strict topology for double centralizer algebras, Trans. amer. math. soc., 150, 633-643, (1970) · Zbl 0204.14701
[13] ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.