×

zbMATH — the first resource for mathematics

On the model companion of the theory of e-fold ordered fields. (English) Zbl 0518.12018

MSC:
12L05 Decidability and field theory
12D15 Fields related with sums of squares (formally real fields, Pythagorean fields, etc.)
03C35 Categoricity and completeness of theories
03B25 Decidability of theories and sets of sentences
12F10 Separable extensions, Galois theory
03C60 Model-theoretic algebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Basarab, S. A., Definite functions on algebraic varieties over ordered fields.Rev. Roumaine Math. Pures Appl. · Zbl 0578.12019
[2] Frey, G., Pseudo algebraically closed fields with non-archimedean real valuations.J. Algebra, 26 (1973), 202–207. · Zbl 0264.12105
[3] Frey, G. &Jarden, M., Approximation theory and the rank of abelian varieties over large algebraic fields.Proc. London Math. Soc., 28 (1974), 112–128. · Zbl 0275.14021
[4] Geyer, W.-D., Galois groups of intersections of local fields.Israel J. Math., 30 (1978), 382–396. · Zbl 0383.12014
[5] Jarden, M., The elementary theory of largee-fold ordered fields.Acta Math., 149 (1982), 239–260. · Zbl 0513.12020
[6] Jarden, M. &Kiehne, U., The elementary theory of algebraic fields of finite corank.Invent. Math., 30 (1975), 275–294. · Zbl 0315.12107
[7] Lang, S.,Diophantine geometry. Intersience Publishers, New York, 1962. · Zbl 0115.38701
[8] McKenna, K., Pseudo-Henselian and pseudo real closed fields. Manuscript.
[9] Prestel, A., Pseudo real closed fields, set theory and model theory.Springer Lecture Notes 872, Berlin, 1982. · Zbl 0466.12019
[10] Schuppar, B., Elementare Aussagen zur Arithmethik und Galoistheorie von Funktionenk√∂rpern.Crelles Journal, 313 (1980), 59–71. · Zbl 0423.12015
[11] Van den Dries, L. P. D.,Model theory of fields. Ph.D. thesis, Utrecht, 1978. · Zbl 0986.03034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.