×

zbMATH — the first resource for mathematics

The \(\ell_p\)-solution of the linear matrix equation \(AX+YB=C\). (English) Zbl 0518.41022

MSC:
65F30 Other matrix algorithms (MSC2010)
41A50 Best approximation, Chebyshev systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baksalary, J. K., Kala, R.: The matrix equationAXB=C. Lin. Alg. and Its Appl.25, 41–44 (1979). · Zbl 0403.15010 · doi:10.1016/0024-3795(79)90004-1
[2] Daugavet, V. A.: Ob odnom variante stupenčatogo stepennogo metoda dlja otyskanija neskol’kyh pervyh sobstvennyh značenij simmetričnoj matricy. Ž. Vyč. i Mat. Fiz.8, 158–165 (1968).
[3] Ekblom, H.: Calculation of linear bestl p -approximations. BIT13, 292–300 (1973). · Zbl 0265.65007 · doi:10.1007/BF01951940
[4] Fischer, J.: An algorithm for discrete linearl p approximation. Numer. Math.38, 129–139 (1981). · Zbl 0463.65041 · doi:10.1007/BF01395812
[5] Fletcher, R., Grant, J. A., Hebden, M. D.: The calculation of linear bestl p approximations. Computer J.14, 276–279 (1971). · Zbl 0225.65017 · doi:10.1093/comjnl/14.3.276
[6] Golub, G. H., Pereyra, V.: Differentiation of pseudoinverses, separable nonlinear least square problems and other tabes. In: Generalized inverses and applications (Nashed, Z., ed.), pp. 303–324. New York: Academic Press 1976. · Zbl 0412.65019
[7] Kahng, S. W.: Bestl p approximation, Math. Comp.26, 505–508 (1972). · Zbl 0266.41020
[8] Merle, G., Späth, H.: Computational experiences with discretel p -approximation. Computing12, 315–321 (1974). · Zbl 0282.65014 · doi:10.1007/BF02253335
[9] Radakrishna Rao, C.: Matrix approximations and reduction of dimensionality in multivariate statistical analysis. In: Multivariate Analysis V (Krishnaiah, P. R., ed.), pp. 3–22. Amsterdam: North-Holland 1980.
[10] Roth, W. E.: The equationsAXB=C andAXB=C in matrices. Proc. Amer. Math. Soc.3, 392–396 (1952). · Zbl 0047.01901
[11] Späth, H.: Algorithmen für multivariable Ausgleichsmodelle. München: Oldenburg 1974. · Zbl 0327.65016
[12] Watson, G. A.: On two methods for discretel p -approximation. Computing18, 263–266 (1977). · Zbl 0365.65008 · doi:10.1007/BF02253212
[13] Watson, G. A.: Approximation theory and numerical methods. London: Wiley 1980. · Zbl 0442.65005
[14] Wilkinson, J. H., Reinsch, C.: Handbook for automatic computation. Linear Algebra. Berlin-Heidelberg-New York: Springer 1971. · Zbl 0219.65001
[15] Wolfe, J. M.: On the convergence of an algorithm for discretel p approximation. Numer. Math.32, 439–459 (1979). · Zbl 0427.65010 · doi:10.1007/BF01401047
[16] Ziętak, K.: Thel p -solution of the nonlinear matrix equationXY=A. BIT23, 248–257 (1983). · Zbl 0527.65011 · doi:10.1007/BF02218445
[17] Ziętak, K.: The Chebyshev solution of the linear matrix equationAX+YB=C. Report Nr. N-121, Institute of Computer Science, University of Wrocław, 1983 (submitted to Numer. Math.).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.