zbMATH — the first resource for mathematics

M-distributive lattices. (English) Zbl 0519.06005

06B15 Representation theory of lattices
06B23 Complete lattices, completions
06D10 Complete distributivity
PDF BibTeX Cite
Full Text: DOI
[1] R.Balbes and P.Dwinger, Distributive lattices. University of Missouri Press 1974.
[2] H.-J. Bandelt, The tensor product of continuous lattices. Math. Z.172, 89–96 (1980). · Zbl 0424.06003
[3] H.-J.Bandelt and M.Erné, Representations and embeddings of -distributive lattices. Houston J. Math. (to appear).
[4] G. Bruns, Distributivität und subdirekte Zerlegbarkeit vollständiger Verbände. Arch. Math.12, 61–66 (1961). · Zbl 0118.02502
[5] G. Bruns, Darstellungen und Erweiterungen geordneter Mengen I. J. Reine Angew. Math.209, 167–200 (1962). · Zbl 0148.01202
[6] G. Bruns, Darstellungen und Erweiterungen geordneter Mengen II. J. Reine Angew. Math.210, 1–23 (1962).
[7] A. Day, Filter monads, continuous lattices and closure systems. Canad. J. Math.27, 50–59 (1975). · Zbl 0436.18003
[8] M.Erné, Verallgemeinerungen der Verbandstheorie, Teil II:m-Ideale in halbgeordneten Mengen und Hüllenräumen. Habilitationsschrift, Hannover 1979.
[9] G.Gierz, K. H.Hofmann, K.Keimel, J. D.Lawson, M.Mislove and D. S.Scott, A compendium of continuous lattices. Berlin-Heidelberg-New York 1980. · Zbl 0452.06001
[10] G. Grätzer, On the family of certain subalgebras of a universal algebra. Indag. Math.27, 790–802 (1965). · Zbl 0138.01603
[11] K. H. Hofmann andA. Stralka, The algebraic theory of compact Lawson semilattices – Applications of Galois connections to compact semilattices. Dissertationes Math.137, 1–54 (1976). · Zbl 0359.06016
[12] S. Papert, Which distributive lattices are lattices of closed sets ? Proc. Cambridge Phil. Soc.55, 172–176 (1959). · Zbl 0178.33703
[13] G. N. Raney, Completely distributive lattices. Proc. Amer. Math. Soc.3, 677–680 (1952). · Zbl 0049.30304
[14] G. N. Raney, A subdirect-union representation for completely distributive complete lattices. Proc. Amer. Math. Soc.4, 518–522 (1953). · Zbl 0053.35201
[15] G. N. Raney, Tight Galois connections and complete distributivity. Trans. Amer. Math. Soc.97, 418–426 (1960). · Zbl 0098.02703
[16] D. S. Scott, Continuous lattices, In: Toposes, algebraic geometry and logic. LNM274, 97–136, Berlin-Heidelberg-New York 1972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.