×

zbMATH — the first resource for mathematics

Ordered groups. (English) Zbl 0519.06014

MSC:
06F15 Ordered groups
06-02 Research exposition (monographs, survey articles) pertaining to ordered structures
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
20F60 Ordered groups (group-theoretic aspects)
22A05 Structure of general topological groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. G. Abagyan, ?Archimedeanness of Abelian partially ordered groups,? Mat. Zametki,26, No. 2, 253?261 (1979). · Zbl 0431.06016
[2] L. V. Arkhipova, ?Abelian groups over distributive structures,? in: Studies in Group Theory [in Russian], Krasnoyarsk (1975), pp. 3?14.
[3] L. V. Arkhipova, ?Structure of Abelian groups generated by distributive structures,? Mosk. Gos. Pedagog. Inst., Moscow (1976) (Manuscript deposited in VINITI, October 8, 1976, No. 3547-76 Dep.).
[4] V. V. Bludov, ?Example of a nonorderable group with strictly isolated identity,? Algebra Logika,11, No. 6, 619?632 (1972). · Zbl 0275.06018 · doi:10.1007/BF02284589
[5] V. V. Bludov, ?Archimedean complete groups,? in: Algebra [in Russian], Vol. 2, Irkutsk (1973), pp. 3?5.
[6] V. V. Bludov, ?Groups, orderable uniquely,? Algebra Logika,13, No. 6, 609?634 (1974).
[7] V. V. Bludov and A. I. Kokorin, ?Semihomogeneously lattice ordered groups,? in: Algebraic Systems [in Russian], Irkutsk (1976), pp. 3?16.
[8] V. V. Bludov and A. I. Kokorin, ?T-genus ordered groups,? Sib. Mat. Zh.,20, No. 6, 1226?1232 (1979). · Zbl 0451.06018
[9] V. V. Bludov and N. Ya. Medvedev, ?Completion of orderable metabelian groups,? Algebra Logika,13, No. 4, 369?373 (1974).
[10] V. F. Bushuev, ?Topological distributive F?-groups,? in: Contemporary Algebra [in Russian], Vol. 5, Leningrad (1976), pp. 10?19.
[11] A. I. Veksler, ?Archimedean free linear spans of partially ordered groups,? in: Ordered Sets and Lattices [in Russian], Vol. 4, Saratov Univ. (1977), pp. 11?23.
[12] A. A. Vinogradov, ?Ordered algebraic systems,? in: Algebra. Topology. Geometry. 1965 [in Russian], Itogi Nauki VINITI Akad. Nauk SSSR, Moscow (1967), pp. 83?131.
[13] A. A. Vinogradov, ?Ordered algebraic systems,? in: Algebra. Topology. Geometry. 1966 [in Russian], Itogi Nauki VINITI Akad. Nauk SSSR, Moscow (1968), pp. 91?108.
[14] A. A. Vinogradov, ?Nonaxiomatizability of lattice ordered groups,? Sib. Mat. Zh.,12, No. 2, 463?464 (1971). · Zbl 0228.06009 · doi:10.1007/BF00969057
[15] A. A. Vinogradov, ?Possibility of partially ordered three-step solvable groups,? Editorial Board of Sib. Mat. Zh., Siberian Branch of Akad. Nauk SSSR, Novosibirsk, 1979 (Manuscript deposited in VINITI, Dec. 4, 1979, No. 4110-79 Dep.).
[16] A. Kh. Gurvich-Leinov and E. B. Rabinovich, ?Representation of the group of all automorphisms of a homogeneously linearly ordered wreath product of o-primitive components,? Vestn. Belorus. Univ. Ser. 1, No. 1, 22?24 (1977).
[17] O. Drevenyak, ?Lattice ordered distributive ?-groups with basis,? Mat. Cas.,25, No. 1, 11?21 (1975).
[18] O. Drevenyak, ?Lexicographic ?-product of lattice-ordered F?-groups,? Math. Slovaca (?SSR),30, No. 1, 31?50 (1980).
[19] A. Ermolov, ?Disposition of subgroups in linearly ordered groups,? in: Algebraic Systems [in Russian], Ivanovo (1978), pp. 14?34.
[20] S. D. Zheleva, ?Cyclically ordered groups,? Sib. Mat. Zh.,17, No. 5, 1046?1051 (1976).
[21] S. D. Zheleva, ?Representation of partially ordered groups by defining inequalities,? Dokl. Bolg. Akad. Nauk,29, No. 11, 1557?1559 (1976).
[22] A. N. Islamov, ?Structure of commutative topological lattice-ordered groups of bicompact origin and generated topological lattice-ordered groups,? Tr. NII Mat. Voronezh. Univ.,20, 71?73 (1975).
[23] A. N. Islamov, ?Structure of commutative topological lattice-ordered groups of bicompact origin,? UzSSR Fanlar Akad. Dokl. Dokl. Akad. Nauk Uzb. SSR, No. 10, 3?4 (1975).
[24] A. N. Islamov, ?Generated topological lattice-ordered groups,? Akad. Nauk Uzb. SSR. Ser. Fiz.-Mat. Nauk, No. 4, 19?22 (1976).
[25] T. É. Kaminskii, ?Riesz groups with a finite number of carriers,? in: Contemporary Algebra [in Russian], Leningrad (1978), pp. 64?72.
[26] A. I. Kokorin and V. M. Kopytov, Linearly Ordered Groups [in Russian], Nauka, Moscow (1972). · Zbl 0192.36401
[27] A. V. Kodunov, ?Coincidence of the k-completion of an Archimedeanl-group with its o-completion,? in: Contemporary Algebra. Groupoids and Their Homomorphisms [in Russian], Leningrad (1980), pp. 50?57.
[28] V. M. Kopytov, ?Ordered Lie algebras,? Algebra Logika,11, No. 3, 295?325 (1972). · Zbl 0271.17008 · doi:10.1007/BF02218611
[29] V. M. Kopytov, ?Linearly ordered solvable groups,? Algebra Logika,12, No. 6, 655?666 (1973). · Zbl 0293.06016 · doi:10.1007/BF02218729
[30] V. M. Kopytov, ?Lattice ordered locally nilpotent groups,? Algebra Logika,14, No. 4, 407?413 (1975). · Zbl 0356.06024 · doi:10.1007/BF01669001
[31] V. M. Kopytov, ?Lattice ordered Lie algebras,? Sib. Mat. Zh.,18, No. 3, 595?607 (1977). · Zbl 0365.06010
[32] V. M. Kopytov, ?Free lattice ordered groups,? Algebra Logika. Novosibirsk,18, No. 4, 426?441 (1979). · Zbl 0438.06011
[33] V. M. Kopytov and N. Ya. Medvedev, ?Linearly ordered groups, whose systems of convex subgroups are central,? Mat. Zametki,19, No. 1, 85?90 (1976). · Zbl 0358.06036
[34] V. M. Kopytov and N. Ya. Medvedev, ?Manifolds of lattice-ordered groups,? Algebra Logika,16, No. 4, 417?423 (1977). · Zbl 0419.06011 · doi:10.1007/BF01669279
[35] K. M. Kutyev, ?Lattice ordered groups,? Ural’sk. Lesotekhn. Inst. Sverdlovsk, 1977 (Manuscript deposited in VINITI, Feb. 16, 1978, No. 556-78 Dep.).
[36] K. M. Kutyev, ?Lattice subsemigroup test for commutativity ofl-groups,? Ural’sk. Lesotekhn. Inst. Sverdlovsk, 1979 (Manuscript deposited in VINITI, Aug. 31, 1979, No. 3191-79 Dep.).
[37] K. M. Kutyev, ?Lattice subsemigroup characteristic of anl-group,? Ural’sk. Lesotekhn. Inst. Sverdlovsk, 1979 (Manuscript deposited in VINITI, Aug. 31, 1979, No. 3192-79 Dep.).
[38] N. Ya. Medvedev, ?Orderable groups with a finite number of relatively convex subgroups,? Sib. Mat. Zh.,15, No. 2, 445?449 (1974). · doi:10.1007/BF00968296
[39] N. Ya. Medvedev, ?Lattices of manifolds of lattice ordered groups and Lie algebras,? Algebra Logika,16, No. 1, 40?45 (1977). · Zbl 0395.06008 · doi:10.1007/BF01669432
[40] N. Ya. Medvedev, ?Extension of orders of Lie algebras,? Sib. Mat. Zh.,18, No. 2, 469?471 (1977). · Zbl 0411.06017 · doi:10.1007/BF00967172
[41] A. V. Mironov, ?Structure of nilpotent lattice ordered groups of bicompact origin,? Uzb. SSR Fanlar Akad. Dokl., Dokl. Akad. Nauk Uzb.SSR, No. 6, 7?9 (1975).
[42] A. V. Mironov, ?Structure of nilpotent topological lattice-ordered groups of bicompact origin. Basic Results,? Dokl. Akad. Nauk SSSR,228, No. 2, 300?302 (1976).
[43] A. V. Mironov, ?Nilpotent lattice-ordered groups of bicompact origin,? in: Questions of Mathematics (Volume of Scientific Papers of Tashkent University, No. 490) [in Russian], Tashkent (1976), pp. 123?128.
[44] G. N. Perlatov, ?Properties of special groups,? in: Theoretical Foundations of Hydrodynamics [in Russian], Tula (1979), pp. 48?54.
[45] V. I. Pshenichnov, ?Structure of certain lattice-ordered groups with topology,? in: Collection of Scientific Papers of Tashkent University [in Russian], No. 573 (1978), pp. 74?76.
[46] V. I. Pshenichnov, ?Finite-dimensionality of locally bicompact lattice-ordered groups with relatively closed n-continuous order,? in: Collection of Scientific Papers of Tashkent University [in Russian], No. 573 (1978), pp. 72?74.
[47] V. I. Pshenichnov, ?Structure of lattice-ordered groups with topology,? Uzb.SSR Fanlar Akad. Dokl., Dokl. Akad. Nauk Uzb.SSR, No. 12, 9?11 (1978).
[48] V. I. Pshenichnov, ?Topological analog of Conrad’s theorem forl-groups with basis,? Uzb.SSR Fanlar Akad. Dokl., Dokl. Akad. Nauk Uzb.SSR, No. 2, 6?8 (1980).
[49] E. B. Rabinovich and V. Z. Feinberg, ?Group of automorphisms of a D-ordered set. I,? Editorial Board of Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk, 1978 (Manuscript deposited in VINITI, Aug. 28, 1978, No. 2914-78 Dep.).
[50] E. B. Rabinovich and V. Z. Feinberg, ?Group of automorphisms of a D-ordered set. II,? Editorial Board of Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk, 1978 (Manuscript deposited in VINITI, Aug. 28, 1978, No. 2915-78 Dep.).
[51] E. B. Rabinovich and V. Z. Feinberg, ?Group of automorphisms of a D-ordered set. III (DW-sets with transitive groups of automorphisms),? Editorial Board of Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk, 1978 (Manuscript deposited in VINITI, Aug. 28, 1978, No. 2916-78 Dep.).
[52] E. B. Rabinovich and V. Z. Feinberg, ?Group of automorphisms of a D-ordered set. IV. (Group of automorphisms of a universal homogeneous T-semistructure),? Editorial Board of Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Minsk, 1978 (Manuscript deposited in VINITI, Aug. 28, 1978, No. 2917-78 Dep.).
[53] G. Ya. Rotkovich, ?Disjointly completel-groups,? in: 28th Gertsen Lectures. Mathematics. Scientific Proceedings [in Russian], Leningrad (1975), pp. 61?62.
[54] G. Ya. Rotkovich, ??-complete lattice-ordered groups,? Czech. Mat. J.,25, No. 2, 279?281 (1975).
[55] G. Ya. Rotkovich, ?Disjointly complete Archimedean semiordered groups,? Czech. Mat. J.,27, No. 4, 523?527 (1977).
[56] G. Ya. Rotkovich, ?Some forms of completeness in Archimedean lattice-ordered groups,? Funkts. Anal., No. 9, 138?143 (1977).
[57] G. Ya. Rotkovich, ?Lattice-ordered groups with cyclic linearly ordered subgroups,? in: Contemporary Algebra. Groupoids and Their Homomorphisms [in Russian], Leningrad (1980), pp. 119?123.
[58] S. A. Todorinov, Godishn. Vissh. Ucheb. Zaved. Prilozhen. Mat.,10, No. 1, 77?83 (1974(1975)).
[59] S. A. Todorinov, ?Groups, all of whose maximal orders are interpolational orders,? Godishn. Vissh. Uchebni Zaved. Prilozhen. Mat.,10, No. 1, 69?75 (1974(1975)).
[60] S. A. Todorinov and P. I. Georgieva, Godishn. Vissh. Uchebni Zaved. Prilozhen. Mat.,10, No. 3, 33?38 (1974(1975)).
[61] S. A. Todorinov and P. I. Georgieva, ?Groups admitting a unique maximal ?-order,? Sib. Mat. Zh.,19, No. 2, 406?411 (1978). · Zbl 0409.06009 · doi:10.1007/BF00970512
[62] S. A. Todorinov and Z. I. Dimitrov, Godishn. Vissh. Uchebni Zaved. Prilozhen. Mat.,10, No. 3, 29?32 (1974(1975)).
[63] S. A. Todorinov and Z. I. Dimitrov, ?Generalized directed groups,? Godishn. Vissh, Uchebni Zaved. Prilozhen. Mat.,13, No. 2, 9?20 (1977(1978)).
[64] S. A. Todorinov and P. I. D’rzhanova, Godishn. Vissh. Tekh. Uchebni Zaved., Mat.,8, No. 4, 89?95 (1972?1973 (1974)).
[65] V. N. Khudaiberdiev, ?Topologicall-groups,? Uzb.SSR Fanlar Akad. Dokl., Dokl. Akad. Nauk Uzb. SSR, No. 11, 6?7 (1974).
[66] R. A. Aló, ?Some order and topological considerations for Riesz spaces andl-groups,? in: Syrnp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 529?546.
[67] M. Andersen, P. Conrad, and O. Kenny, ?Splitting properties in Archimedeanl-groups,? J. Austral. Math. Soc.,23, No. 2, 247?256 (1977). · doi:10.1017/S1446788700018231
[68] J. C. Ault, ?Extensions of partial right orders in nilpotent groups,? J. London Math. Soc.,2, No. 4, 749?752 (1970). · Zbl 0213.31503 · doi:10.1112/jlms/2.Part_4.749
[69] J. C. Ault, ?Right-ordered locally nilpotent groups,? J. London Math. Soc.,4, No. 4, 662?666 (1972). · Zbl 0236.06014 · doi:10.1112/jlms/s2-4.4.662
[70] R. N. Ball, ?Full convexl-subgroups and the existence of ?*-closures of lattice ordered groups,? Pac. J. Math.,61, No. 1, 7?16 (1975). · Zbl 0343.06018 · doi:10.2140/pjm.1975.61.7
[71] R. N. Ball, ?Topological lattice ordered groups,? Pac. J. Math.,83, No. 1, 1?26 (1979). · Zbl 0434.06016 · doi:10.2140/pjm.1979.83.1
[72] M. A. Bardwell, ?The o-primitive components of a regular ordered permutation group,? Pac. J. Math.,84, No. 2, 261?274 (1979). · Zbl 0397.06015 · doi:10.2140/pjm.1979.84.261
[73] J. Berman, ?Homogeneous lattice and lattice-ordered groups,? Colloq. Math.,32, No. 1, 13?24 (1974). · Zbl 0298.06005
[74] S. J. Bernau, ?Lateral and Dedekind completion of Archimedean lattice groups,? J. London Math. Soc.,12, No. 3, 320?322 (1976). · Zbl 0333.06008 · doi:10.1112/jlms/s2-12.3.320
[75] S. J. Bernau, ?The lateral completion for an arbitrary lattice-ordered groups,? J. Austral. Math. Soc.,19, No. 3, 263?289 (1975). · Zbl 0314.06011 · doi:10.1017/S1446788700031463
[76] S. J. Bernau, ?Varieties of lattice groups are closed underL-completion,? in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 349?355.
[77] W. M. Beynon, ?Application of duality in the theory of finitely generated lattice-ordered Abelian groups,? Can. J. Math.,29, No. 2, 243?254 (1977). · Zbl 0361.06017 · doi:10.4153/CJM-1977-026-4
[78] A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et Anneaux Reticules, Lect. Notes Math.,608 (1977). · Zbl 0384.06022
[79] R. D. Bleier, ?The SP-hull of a lattice-ordered group,? Can. J. Math.,26, No. 4, 866?878 (1974). · Zbl 0298.06021 · doi:10.4153/CJM-1974-081-x
[80] R. D. Bleier, ?The orthocompletion of a lattice-ordered group,? Proc. Kon. Ned. Akad. Wetensch.,A79, No. 1, 1?7 (1976); Indag. Math.,38, No. 1, 1?7 (1976). · Zbl 0329.06013 · doi:10.1016/1385-7258(76)90000-7
[81] R. D. Bleier, ?Freel-groups and vector lattices,? J. Austral. Math. Soc.,19, No. 3, 337?342 (1976). · Zbl 0313.06011 · doi:10.1017/S1446788700031542
[82] R. D. Bleier and P. Conrad, ??*-closures of lattice-ordered groups,? Trans. Am. Math. Soc.,209, No. 482, 367?387 (1975). · Zbl 0321.06019
[83] R. D. Byrd and J. T. Lloyd, ?Kernels in lattice-ordered groups,? Proc. Am. Math. Soc.,57, No. 1, 16?18 (1976). · Zbl 0341.06008 · doi:10.1090/S0002-9939-1976-0406900-7
[84] R. D. Byrd, J. T. Lloyd, and R. A. Mena, ?On the retractibility of some one-relator groups,? Pac. J. Math.,72, No. 2, 351?359 (1977). · Zbl 0344.20030 · doi:10.2140/pjm.1977.72.351
[85] R. D. Byrd, J. T. Lloyd, R. A. Mena, and J. R. Teller, ?The lattice ofl-?-subgroups of a retractable group,? in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 515?524. · Zbl 0379.06009
[86] R. D. Byrd, J. T. Lloyd, R. A. Mena, and J. R. Teller, ?The lattice of solid ?-subgroups of a retractable group,? Czech. Mat. J.,28, No. 2, 189?199 (1978). · Zbl 0388.06013
[87] R. D. Byrd, J. T. Lloyd, R. A. Mena, and J. R. Teller, ?Retractable groups,? Acta Math. Acad. Sci. Hung.,29, Nos. 3?4, 219?233 (1977). · Zbl 0389.06018 · doi:10.1007/BF01895841
[88] R. D. Byrd, J. T. Lloyd, and J. W. Stepp, ?Groups of complexes of lattice-ordered group,? in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 525?528. · Zbl 0379.06010
[89] R. D. Byrd, J. T. Lloyd, and J. W. Stepp, ?Groups of complexes of a representable lattice-ordered group,? Glasgow Math. J.,19, No. 2, 135?139 (1978). · Zbl 0385.06025 · doi:10.1017/S0017089500003529
[90] ?. ?er?ak, ?Cantor extension of a mixed product of directed groups,? Math. Slovaca (?SSR),26, No. 2, 103?114 (1976).
[91] ?. ?er?ak, ?On some types of maximall-subgroups of a lattice ordered group,? Math. Slovaca (?SSR),28, No. 4, 349?359 (1978).
[92] ?. ?er?ak, ?On the maximal Dedekind completion of a lattice-ordered group,? Math. Slovaca (?SSR),29, No. 3, 305?313 (1979).
[93] C. G. Chehata and R. Wiegandt, ?Radical theory for fully ordered groups,? Mathematica (RSR),20, No. 2, 143?157 (1978). · Zbl 0409.06008
[94] P. Conrad, ?The topological completion and the linearly compact hull of an Abelianl-group,? Proc. London Math. Soc.,28, No. 3, 457?482 (1974). · Zbl 0298.06024 · doi:10.1112/plms/s3-28.3.457
[95] P. Conrad, ?Epi-archimedean groups,? Czech. Mat. J.,24, No. 2, 192?218 (1974). · Zbl 0319.06009
[96] P. Conrad, ?Countable vector lattices,? Bull. Austral. Math. Soc.,10, No. 3, 371?376 (1974). · Zbl 0278.06018 · doi:10.1017/S000497270004106X
[97] P. Conrad, ?The additive group of an f-ring,? Can. J. Math.,26, No. 5, 1157?1168 (1974). · Zbl 0293.06019 · doi:10.4153/CJM-1974-108-3
[98] P. Conrad, ?Changing the scalar multiplication on a vector lattice,? J. Austral. Math. Soc.,20, No. 3, 332?347 (1975). · Zbl 0317.06014 · doi:10.1017/S1446788700020693
[99] P. Conrad, ?Torsion radicals of a lattice-ordered groups,? in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 479?513.
[100] P. Conrad and P. Montgomery, ?Lattice-ordered groups with rank one components,? Czech. Mat. J.,25, No. 3, 445?453 (1975). · Zbl 0328.06015
[101] G. Davis and C. D. Fox, ?Compatible tight Riesz orders on the group of automorphisms of an o-2-homogeneous set,? Can. J. Math.,28, No. 5, 1076?1082 (1976). · Zbl 0353.06004 · doi:10.4153/CJM-1976-107-6
[102] G. Davis and C. D. Fox, ?Compatible tight Riesz orders on the group of automorphisms of an o-2-homogeneous set: addendum,? Can. J. Math.,29, No. 3, 664?665 (1977). · Zbl 0407.06006 · doi:10.4153/CJM-1977-068-4
[103] G. Davis and E. Loci, ?Compatible tight Riesz orders on ordered permutation groups,? J. Austral. Math. Soc.,21, No. 3, 317?333 (1976). · Zbl 0408.06006 · doi:10.1017/S1446788700018619
[104] G. A. Eiliott, ?A property of totally ordered Abelian groups,? R. Soc. Can. Math. Repts.,1, No. 2, 63?66 (1979).
[105] G. A. Eiliott, ?On totally ordered groups and K0 +,? Lect. Notes Math.,734, 1?49 (1979). · doi:10.1007/BFb0103152
[106] I. Fleischer, ?Über verbandsgeordnete Vektorgruppen mit Operatoren,? Math. Nachr.,72, 141?144 (1976). · Zbl 0296.06011 · doi:10.1002/mana.19760720112
[107] E. Formanek, ?Extending partial right orders on nilpotent groups,? J. London Math. Soc.,7, No. 1, 131?134 (1973). · Zbl 0266.06007 · doi:10.1112/jlms/s2-7.1.131
[108] C. D. Fox, ?The problem of adjoining roots to ordered groups,? Bull. Austral. Math. Soc.,11, No. 1, 151?158 (1974). · Zbl 0278.06014 · doi:10.1017/S0004972700043720
[109] C. D. Fox, ?An embedding theorem for ordered groups,? Bull. Austral. Math. Soc.,12, No. 3, 321?335 (1975). · Zbl 0298.06020 · doi:10.1017/S0004972700023972
[110] C. D. Fox, ?Commutators in orderable groups,? Commun. Algebra,3, No. 3, 213?217 (1975). · Zbl 0303.06012 · doi:10.1080/00927877508822044
[111] C. D. Fox, ?Can a Fibonacci group be a unique products group?? Bull. Austral. Math. Soc.,19, No. 3, 475?477 (1978). · Zbl 0402.06006 · doi:10.1017/S000497270000900X
[112] J. D. Franchello, ?Sublattices of free products of lattice ordered groups,? Algebra Univ.,8, No. 1, 101?110 (1978). · Zbl 0373.06012 · doi:10.1007/BF02485375
[113] T. Gavalcová, ?Decomposition of a completel-group into an M-product of an M-atomic and an M-nonatomicl-subgroups,? Scripta Fac. Sci. Natur. UJEP Brun. Math.,4, No. 1, 3?6 (1974(1975)).
[114] A. M. W. Glass, ?l -simple lattice-ordered groups,? Proc. Edinburgh Math. Soc.,19, No. 2, 133?138 (1974). · Zbl 0296.06010 · doi:10.1017/S0013091500010257
[115] A. M. W. Glass, ?The word problem for lattice ordered groups,? Proc. Edinburgh Math. Soc.,19, No. 3, 217?219 (1975). · Zbl 0323.06024 · doi:10.1017/S0013091500015479
[116] A. M. W. Glass, ?Results in partially ordered groups,? Commun. Algebra,3, No. 8, 749?761 (1975). · Zbl 0323.06023 · doi:10.1080/00927877508822070
[117] A. M. W. Glass, ?Compatible tight Riesz orders,? Can. J. Math.,28, No. 1, 186?200 (1976). · Zbl 0302.20051 · doi:10.4153/CJM-1976-024-4
[118] A. M. W. Glass, ?Compatible tight Riesz orders. II,? Can. J. Math.,31, No. 2, 304?307 (1979). · Zbl 0411.06013 · doi:10.4153/CJM-1979-032-2
[119] A. M. W. Glass, W. Ch. Holland, and S. H. McCleary, ??*-closures of completely distributive lattice ordered groups,? Pac. J. Math.,59, No. 1, 43?67 (1975). · Zbl 0294.06013 · doi:10.2140/pjm.1975.59.43
[120] A. M. W. Glass and S. H. McCleary, ?Somel -simple pathological lattice-ordered groups,? Proc. Am. Math. Soc.,57, No. 2, 221?226 (1976). · Zbl 0352.06012
[121] C. Goffman, ?Completeness of the real numbers,? Math. Mag.,47, No. 1, 1?8 (1974). · Zbl 0289.06001 · doi:10.2307/2688754
[122] Y. Gurevich, ?Expanded theory of ordered Abelian groups,? Ann. Math. Log.,12, No. 2, 193?228 (1977). · Zbl 0368.06016 · doi:10.1016/0003-4843(77)90014-6
[123] J. L. Hickman, ?Groups of automorphisms of linearly ordered sets,? Bull. Austral. Math. Soc.,15, No. 1, 13?32 (1976). · Zbl 0328.06001 · doi:10.1017/S000497270003673X
[124] W. Ch. Holland, ?Outer automorphisms of ordered permutation groups,? Proc. Edinburgh Math. Soc.,19, No. 4, 331?344 (1975). · Zbl 0325.06010 · doi:10.1017/S0013091500010439
[125] W. Ch. Holland, ?The largest proper variety of lattice-ordered groups,? Proc. Am. Math. Soc.,57, No. 1, 25?28 (1976). · Zbl 0339.06011 · doi:10.1090/S0002-9939-1976-0406902-0
[126] W. Ch. Holland, ?Group equations which hold in lattice-ordered groups,? in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 365?378.
[127] W. Ch. Holland, ?Varieties ofl-groups are torsion classes,? Czech. Mat. J.,29, No. 1, 11?12 (1979).
[128] W. Ch. Holland and J. Martinez, ?Accessibility of torsion classes,? Algebra Univ.,9, No. 2, 199?206 (1979). · Zbl 0428.06011 · doi:10.1007/BF02488030
[129] W. Ch. Holland and S. H. McCleary, ?Solvability of the word problem in free lattice-ordered-groups,? Houston J. Math.,5, No. 1, 99?105 (1979). · Zbl 0387.06011
[130] H. A. Hollister, ?Nilpotentl-groups are representable,? Algebra Univ.,8, No. 1, 65?71 (1978). · Zbl 0385.06024 · doi:10.1007/BF02485371
[131] J. Jakubik, ?Splitting property of lattice ordered groups,? Czech. Mat. J.,24, No. 2, 257?269 (1974). · Zbl 0327.06013
[132] J. Jakubik, ?Conditionally orthogonally completel-groups,? Math. Nachr.,65, 153?162 (1975). · Zbl 0299.06011 · doi:10.1002/mana.19750650113
[133] J. Jakubik, ?Cardinal sums of linearly ordered groups,? Czech. Mat. J.,25, No. 4, 568?575 (1975). · Zbl 0332.06018
[134] J. Jakubik, ?Products of torsion classes of lattice ordered groups,? Czech. Mat. J.,25, No. 4, 576?585 (1975). · Zbl 0333.06007
[135] J. Jakubik, ?Unendliche Distributivität in Verbandsgruppen,? Scripta Fac. Sci. Natur. UJEP Brun. Math.,4, No. 1, 31?33 (1974(1975)). · Zbl 0373.06007
[136] J. Jakubik, ?Lattice ordered groups with cyclic linearly ordered subgroups,? Cas. Pestov Mat.,101, No. 1, 88?90 (1976). · Zbl 0332.06017
[137] J. Jakubik, ?Strongly projectable lattice ordered groups,? Czech. Mat. J.,26, No. 4, 642?652 (1976). · Zbl 0365.06008
[138] J. Jakubik, ?Radical mappings and radical classes of lattice-ordered groups,? in: Symp. Math. Inst. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 451?477. · Zbl 0368.06013
[139] J. Jakubik, ?Archimedean kernel of a lattice ordered groups,? Czech. Math. J.,28, No. 1, 140?154 (1978). · Zbl 0384.06021
[140] J. Jakubik, ?Generalized Dedekind completion of a lattice ordered group,? Czech. Mat. J.,28, No. 2, 294?311 (1978). · Zbl 0391.06013
[141] J. Jakubik, ?Orthogonal hull of a strongly projectable lattice ordered group,? Czech. Math. J.,28, No. 3, 484?504 (1978). · Zbl 0391.06014
[142] J. Jakubik, ?Maximal Dedekind completion of an Abelian lattice ordered group,? Czech. Mat. J.,28, No. 4, 611?631 (1978). · Zbl 0432.06012
[143] J. Jakubik, ?On algebraic operations of a lattice ordered group,? Colloq. Math.,4, No. 1, 35?44 (1979). · Zbl 0422.06007
[144] J. Jakubik, ?Generalized lattice identities in lattice ordered groups,? Czech. Mat. J.,30, No. 1, 127?134 (1980). · Zbl 0436.06012
[145] J. Jakubik, ?Isometrics of lattice ordered groups,? Czech. Mat. J.,30, No. 1, 142?152 (1980). · Zbl 0436.06013
[146] M. Jakubiková, ?Distributivität desl-Untergruppenverbändes einer Verbandsgruppe,? Math. Cas.,25, No. 2, 189?192 (1975).
[147] M. Jakubiková, ?Totally inhomogeneous lattice ordered groups,? Czech. Mat. J.,28, No. 4, 594?610 (1978).
[148] M. Jakubiková, ?On complete lattice ordered groups with two generators. I,? Math. Slovaca (CSSR),28, No. 4, 389?406 (1978).
[149] M. Jakubiková, ?On complete lattice ordered groups with two generators. II,? Math. Slovaca (?SSR),29, No. 3, 271?287 (1979).
[150] M. Keisler, ?A type of nearest point set in a completel-groups,? Proc. Am. Math. Soc.,67, No. 2, 189?197 (1977).
[151] G. O. Kenny, ?The completion of an Abelianl-group,? Can. J. Math.,27, No. 5, 980?985 (1975). · Zbl 0321.06021 · doi:10.4153/CJM-1975-101-1
[152] G. O. Kenny, ?The Archimedean kernel of a lattice ordered group,? Publ. Math.,25, Nos. 1?2, 53?60 (1978). · Zbl 0411.06014
[153] S. M. Khaleelulla, ?A closed graph theorem for ordered topological Abelian groups,? Tamkang J. Math.,7, No. 1, 31?35 (1976). · Zbl 0362.22003
[154] A. I. Kokorin and V. M. Kopytov, Fully Ordered Groups, Wiley, New York, Chichester; JerusalemLondon, Israel Progr. Sci. Transi. (1974). · Zbl 0192.36401
[155] Y. Komori, ?Completeness of two theories on ordered Abelian groups and embedding relations,? Nagoya Math. J.,77, 33?39 (1980). · Zbl 0404.03014 · doi:10.1017/S0027763000018638
[156] S. Koppelberg, ?Groups cannot be Souslin ordered,? Arch. Math.,29, No. 3, 315?317 (1977). · Zbl 0369.06011 · doi:10.1007/BF01220411
[157] R. H. La Grange and A. H. Rhemtulla, ?A remark on the group rings of order preserving permutation groups,? Can. Math. Bull.,11, No. 5, 679?680 (1968). · Zbl 0177.04502 · doi:10.4153/CMB-1968-081-9
[158] E. A. Loci, ?Tight Riesz orders via congruences,? Bull. Austral. Math. Soc.,18, No. 1, 153?154 (1978). · Zbl 0352.06015 · doi:10.1017/S0004972700007929
[159] F. Loonstra, ?Classes of partially ordered groups,? in: Symp. Math. Inst. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 335?348.
[160] J. Martinez, ?Varieties of lattice-ordered groups,? Math. Z.,137, No. 4, 265?284 (1974). · Zbl 0274.20034 · doi:10.1007/BF01214370
[161] J. Martinez, ?The hyperarchimedean kernel sequence of a lattice-ordered group,? Bull. Austral. Math. Soc.,10, No. 3, 337?349 (1974). · Zbl 0275.06026 · doi:10.1017/S0004972700041022
[162] J. Martinez, ?Torsion theory for lattice-ordered groups,? Czech. Mat. J.,25, No. 2, 284?299 (1975). · Zbl 0321.06020
[163] J. Martinez, ?Doubling chains, singular elements and hyper-?-l-groups,? Pac. J. Math.,61, No. 2, 503?505 (1975). · Zbl 0329.06014 · doi:10.2140/pjm.1975.61.503
[164] J. Martinez, ?Torsion theory for lattice-ordered groups. Part II. Homogeneousl-groups,? Czech. Mat. J.,26, No. 1, 93?100 (1976).
[165] J. Martinez, ?Pairwise splitting lattice-ordered groups,? Czech. Mat. J. (?SSR),27, No. 4, 545?551 (1977). · Zbl 0378.06009
[166] J. Martinez, ?Nilpotent lattice ordered groups,? Algebra Univ.,9, No. 3, 329?338 (1979). · Zbl 0426.06012 · doi:10.1007/BF02488045
[167] S. H. McCleary, ?The lattice-ordered group of automorphisms of ?-set,? Pac. J. Math.,49, No. 2, 417?424 (1973). · Zbl 0275.06024 · doi:10.2140/pjm.1973.49.417
[168] S. H. McCleary, ?o-2 -transitive ordered permutation groups,? Pac. J. Math.,49, No. 2, 425?429 (1973). · Zbl 0257.06006 · doi:10.2140/pjm.1973.49.425
[169] S. H. McCleary, ?o-2 -primitive ordered permutation groups. II,? Pac. J. Math.,49, No. 2, 431?443 (1973). · Zbl 0253.06017 · doi:10.2140/pjm.1973.49.431
[170] S. H. McCleary, ?The structure of intransitive ordered permutation groups,? Algebra Univ.,6, No. 2, 229?255 (1976). · Zbl 0355.06016 · doi:10.1007/BF02485831
[171] J. B. Miller, ?Subdirect representation of tight Riesz groups by hybrid products,? J. Reine Angew. Math.,283?284, 110?124 (1976). · Zbl 0375.06013
[172] J. B. Miller, ?The order-dual of a TRL-group. I,? J. Austral. Math. Soc.,A25, No. 2, 129?141 (1978). · doi:10.1017/S1446788700038714
[173] J. B. Miller, ?Direct summands inl-groups,? Proc. R. Soc. Edinburgh,A81, Nos. 3?4, 175?186 (1978). · Zbl 0409.06006 · doi:10.1017/S0308210500010532
[174] J. Mo?ko?, ?A realization of d-groups,? Czech. Mat. J.,27, No. 2, 296?312 (1977).
[175] J. Mo?ko?, ?Prüfer d-groups,? Czech. Mat. J.,28, No. 1, 127?139 (1978).
[176] J. L. Mott, ?Generalized discretel-groups,? J. Austral. Math. Soc.,20, No. 3, 281?289 (1975). · doi:10.1017/S1446788700020632
[177] R. B. Mura, ?Right-ordered polycyclic groups,? Can. Math. Bull.,17, No. 2, 175?178 (1974). · Zbl 0292.06006 · doi:10.4153/CMB-1974-035-9
[178] R. B. Mura and A. H. Rhemtulla, ?Solvable groups in which every maximal partial order is isolated,? Pac. J. Math.,51, No. 2, 509?514 (1974). · Zbl 0293.06015 · doi:10.2140/pjm.1974.51.509
[179] R. B. Mura and A. H. Rhemtulla, ?Solvable R*-groups,? Math. Z.,142, No. 3, 293?298 (1975). · Zbl 0327.06011 · doi:10.1007/BF01183052
[180] R. B. Mura and A. H. Rhemtulla, ?Ordered solvable groups satisfying the maximal condition of isolated subgroups and groups with finitely many relatively convex subgroups,? J. Algebra,36, No. 1, 38?45 (1975). · Zbl 0327.06011 · doi:10.1016/0021-8693(75)90153-2
[181] R. B. Mura and A. H. Rhemtulla, ?A class of right-orderable groups,? Can. J. Math.,29, No. 3, 648?654 (1977). · Zbl 0337.20018 · doi:10.4153/CJM-1977-066-x
[182] R. B. Mura and A. H. Rhemtulla, Orderable Groups, Marcel Dekker, New York-Basel (1977).
[183] R. B. Mura and A. H. Rhemtulla, ?Extensions of orderable groups,? Can. Math. Bull.,20, No. 3, 393?395 (1977). · Zbl 0337.20018 · doi:10.4153/CMB-1977-059-7
[184] R. B. Mura and A. H. Rhemtulla, ?Subdirect products of O*-groups,? Algebra Univ.,8, No. 1, 23?27 (1978). · Zbl 0366.06029 · doi:10.1007/BF02485366
[185] P. J. Nyikos and H.-C. Reichel, ?Topologically orderable groups,? Gen. Topol. Appl.,5, No. 3, 195?204 (1975). · Zbl 0302.22003 · doi:10.1016/0016-660X(75)90020-3
[186] F. Pederson, ?Spitz inl-groups,? Czech. Mat. J.,24, No. 2, 254?256 (1974).
[187] F. Pedersen, ?Epimorphisms in the category of Abelianl-groups,? Proc. Am. Math. Soc.,53, No. 2, 311?317 (1975).
[188] K. R. Pierce, ?Amalgamations of lattice ordered groups,? Trans. Am. Math. Soc.,172, Oct., 249?260 (1972). · doi:10.1090/S0002-9947-1972-0325488-3
[189] K. R. Pierce, ?Extensions of right orders in solvable groups,? J. London Math. Soc.,11, No. 1, 81?87 (1975). · Zbl 0313.06014 · doi:10.1112/jlms/s2-11.1.81
[190] K. R. Pierce, ?Amalgamated sums of Abelianl-groups,? Pac. J. Math.,65, No. 1, 167?173 (1976). · Zbl 0352.06013 · doi:10.2140/pjm.1976.65.167
[191] G. Pilz, ?Characterization of all order relations in direct sums of ordered groups,? Collect. Math.,213, No. 2, 85?90 (1972). · Zbl 0275.06020
[192] K. B. Prabhakara Rao, ?Extensions of strict partial orders in N-groups,? J. Austral. Math. Soc.,A25, No. 2, 241?249 (1978). · Zbl 0375.06014
[193] J. Rachunek, ?Prime subgroups of ordered groups,? Czech. Mat. J.,24, No. 4, 541?551 (1974). · Zbl 0352.06011
[194] J. Rachunek, ?On extensions of ordered groups and rings,? Acta Math. Acad. Sci. Hung.,28, Nos. 1?2, 37?40 (1976). · Zbl 0356.06026 · doi:10.1007/BF01902491
[195] J. Rachunek, ?Riesz groups with a finite number of disjoint elements,? Czech. Mat. J.,28, No. 1, 102?107 (1978). · Zbl 0385.06023
[196] J. Rachunek, ?Z-subgroups of ordered groups,? Math. Slovaca,29, No. 1, 39?41 (1979). · Zbl 0401.06010
[197] J. Rachunek, ?Extensions of semi-orders of groups,? Glas. Mat., Ser. 3,14, No. 1, 17?20 (1979). · Zbl 0407.06007
[198] J. A. Read, ?L-sous-groupes compressibles du groupe-réticulé A(S),? Sémin. P. Dubreil. Algèbre Univ. Paris,25, No. 1, 6/1?6/4 (1971?1972 (1973)).
[199] R. H. Redfild, ?Archimedean and basis elements in completely distributive lattice-ordered groups,? Pac. J. Math.,63, No. 1, 247?253 (1976). · Zbl 0324.06007 · doi:10.2140/pjm.1976.63.247
[200] R. H. Redfild, ?Bases in completely distributive lattice-ordered groups,? Mich. Math. J.,22, No. 4, 301?307 (1976). · Zbl 0303.06013 · doi:10.1307/mmj/1029001570
[201] R. H. Redfild, ?Nonsecular, locally compact TRL-groups,? Glasgow Math. J.,21, No. 1, 1?7 (1980). · Zbl 0445.06012 · doi:10.1017/S0017089500003918
[202] N. R. Reilly, ?Representations of ordered groups with compatible tight Riesz orders,? J. Austral. Math. Soc.,20, No. 3, 307?322 (1975). · Zbl 0311.06012 · doi:10.1017/S144678870002067X
[203] A. H. Rhemtulla, ?Right-ordered groups,? Can. J. Math.,24, No. 5, 892?895 (1972). · Zbl 0247.06019 · doi:10.4153/CJM-1972-088-x
[204] A. H. Rhemtulla, ?Residually Fp-groups, for many primes p, are orderable,? Proc. Am. Math. Soc.,41, No. 1, 31?33 (1973). · Zbl 0275.06019
[205] J. Ru?i?ka, ?Polars on partially ordered groups,? Arch. Mat.,12, No. 1, 53?62 (1976).
[206] N. Sankaran, ?Classification of totally ordered Abelian groups,? J. Indian Math. Soc.,29, Nos. 1?2, 9?29 (1965). · Zbl 0158.03202
[207] H. Schneider, ?The Birkhoff-Egérvary-König theorem for matrices over lattice ordered Abelian groups,? Acta Math. Acad. Sci. Hung.,30, Nos. 1?2, 91?94 (1977). · Zbl 0368.06015 · doi:10.1007/BF01895652
[208] E. B. Scrimger, ?A large class of small varieties of lattice-ordered groups,? Proc. Am. Math. Soc.,51, No. 2, 301?306 (1975). · Zbl 0312.06010 · doi:10.1090/S0002-9939-1975-0384644-7
[209] B. F. Sherman, ?Cauchy completion of partially ordered groups,? J. Austral. Math. Soc.,18, No. 2, 222?229 (1974). · Zbl 0294.06015 · doi:10.1017/S1446788700019959
[210] B. F. Sherman, ?Cauchy completion of tight Riesz groups,? J. Austral. Math. Soc.,19, No. 1, 62?73 (1975). · Zbl 0301.06010 · doi:10.1017/S1446788700023545
[211] W. S. Sizer, ?Group retractions induced by a total order,? Houston J. Math.,5, No. 2, 267?268 (1979). · Zbl 0414.20053
[212] B. Smarda, ?The lattice of topologies of topologicall-groups,? Czech. Mat. J.,26, No. 1, 128?136 (1976). · Zbl 0333.54004
[213] B. Smarda, ?Connectivity in TL-groups,? Arch. Mat.,12, No. 1, 1?7 (1976). · Zbl 0373.22003
[214] J. E. Smith, ?The lattice ofl-group varieties,? Trans. Am. Math. Soc.,257, No. 2, 347?357 (1980).
[215] K. L. N. Swamy, ?Isometries in autometrized lattice-ordered groups. II,? Math. Semin. Notes Kobe Univ.,5, No. 2, 211?214 (1977). · Zbl 0457.06015
[216] K. L. N. Swamy, ?Isometries in autometrized lattice-ordered groups,? Algebra Univ.,8, No. 1, 59?64 (1978). · Zbl 0409.06007 · doi:10.1007/BF02485370
[217] I. Tofan and S. Nistor, ?Sur les groupes linéarisables,? An. Sti. Univ. Iasi, Sec. la,23, No. 1, 17?20 (1977). · Zbl 0384.06020
[218] K. M. Van Meter, ?Les sousgroupes d’un groupe quasi-réticulé,? Semin. P. Dubreil. Algèbre Univ. Paris,25, No. 1, 4/1?4/13 (1971?1972 (1973)).
[219] H.-J. Vogel, ?Gruppen inäquivalenter z-Erweiterungen linear geordneter abelscher Gruppen mit natürlich geordneten Monoiden,? Math. Nachr.,74, 289?294 (1976). · Zbl 0392.06005 · doi:10.1002/mana.3210740123
[220] A. Wirth, ?Locally compact tight Riesz groups,? J. Austral. Math. Soc.,19, No. 2, 247?251 (1975). · Zbl 0306.06016 · doi:10.1017/S1446788700029542
[221] S. Wolfenstein, ?Valeurs normales dans un groupe réticulé,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,44, No. 3, 337?342 (1968). · Zbl 0174.06003
[222] S. Wolfenstein, ?Groupes réticulés singuliers,? Sémin. P. Dubreil. Algèbre Univ. Paris,25, No. 1, 5/1?5/9 (1971?1972 (1973)).
[223] S. Wolfenstein, ?Représentation d’une classe de groupes archimédiens,? J. Algebra,42, No. 1, 199?207 (1976). · Zbl 0339.06012 · doi:10.1016/0021-8693(76)90037-5
[224] F. Ziemke, ?Ordnungsfähige topologische Gruppen,? Diss. Dokt. Naturwiss. Fak. Math. Naturwiss. Techn. Univ. Hanover (1978).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.