Friedlander, Eric M. Etale K-theory. I: Connections with etale cohomology and algebraic vector bundles. (English) Zbl 0519.14010 Invent. Math. 60, 105-134 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 15 Documents MSC: 14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry 14C99 Cycles and subschemes 14F35 Homotopy theory and fundamental groups in algebraic geometry 55N15 Topological \(K\)-theory 18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects) Keywords:topological K-theory; algebraic K-theory; etale K-theory; etale homotpy; etale cohomology; l-adic cohomology; algebraic cycles; Tate conjecture on algebraic cycles Citations:Zbl 0182.260 PDF BibTeX XML Cite \textit{E. M. Friedlander}, Invent. Math. 60, 105--134 (1980; Zbl 0519.14010) Full Text: DOI EuDML OpenURL References: [1] Adams, J.F.: Stable Homotopy and Generalized Homology. Chicago: University of Chicago Press 1974 · Zbl 0309.55016 [2] Araki, S., Toda, H.: Multiplicative structures in modq cohomology theories, I and II, Osaka J. Math.2, 71-115 (1965) and3, 81-120 (1966) · Zbl 0129.15201 [3] Artin, M., Mazur, B.: Etale Homotopy. Lecture notes in Math. 100. Berlin: Springer-Verlag 1969 · Zbl 0182.26001 [4] Atiyah, M., Hirzebruch, F.: Vector bundles and homogeneous spaces. Proc. of Sym. in Pure Math.III, 7-38 (1961) · Zbl 0108.17705 [5] Bass, H.: AlgebraicK-theory. New York: Benjamin 1968 · Zbl 0174.30302 [6] Boardman, J.M.: Stable Homotopy Theory. University of Warwick Notes [7] Browder, W.: AlgebraicK-theory with coefficients ?/p. Lecture notes in Math. 651 pp. 40-84. Berlin: Springer-Verlag 1978 [8] Deligne, P.: Cohomologie Etale (SGA 41/2). Lecture notes in Math. 569. Berlin: Springer-Verlag 1977 [9] Friedlander, E.: Fibrations in etale homotopy theory. Publ. Math. I.H.E.S.42, 5-46 (1972) · Zbl 0351.55011 [10] Friedlander, E.: Etale Homotopy of Simplicial Schemes. to appear · Zbl 0538.55001 [11] Friedlander, E.: EtaleK-theory II: Connections with algebraicK-theory. to appear [12] Grothendieck, A.: La theorie des classes de Chern. Bull. Soc. Math. France vol86, 137-154 (1958) · Zbl 0091.33201 [13] Jouanolou, J.-P.: Une suite’ exacte de Mayer-Vietoris enK-theorie algebraique. Lecture notes in Math. 341, pp. 293-316. Berlin: Springer-Verlag 1973 [14] Kleiman, S.: Geometry on grassmannians and applications to splitting bundles and smoothing cycles, Pub. I.H.E.S.36, 281-298 (1969) · Zbl 0208.48501 [15] Quillen, D.: Some remarks on etale homotopy and a conjecture of Adams, Topology7, 111-116 (1968) · Zbl 0157.30303 [16] Sullivan, D.: Genetics of homotopy theory and the Adams conjecture. Annals of Math.100, 1-79 (1974) · Zbl 0355.57007 [17] Tate, J.: Algebraic cycles and poles of zeta functions. In: Arithmetic Algebraic Geometry, pp. 93-110. New York: Harper & Row 1965 · Zbl 0213.22804 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.