×

zbMATH — the first resource for mathematics

Markov processes and random fields. (English) Zbl 0519.60046

MSC:
60G60 Random fields
60J25 Continuous-time Markov processes on general state spaces
60J65 Brownian motion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Patrick Billingsley, Probability and measure, John Wiley & Sons, New York-Chichester-Brisbane, 1979. Wiley Series in Probability and Mathematical Statistics. · Zbl 0411.60001
[2] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. · Zbl 0169.49204
[3] R. Cairoli and John B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111 – 183. · Zbl 0334.60026 · doi:10.1007/BF02392100 · doi.org
[4] R. L. Dobrušin and M. Ja. Kel\(^{\prime}\)bert, Local additive functionals of generalized Gaussian fields, Uspekhi Mat. Nauk 34 (1979), no. 5(209), 223 – 224 (Russian).
[5] E. B. Dynkin, Theory of Markov processes, Translated from the Russian by D. E. Brown; edited by T. Köváry, Prentice-Hall, Inc., Englewood Cliffs, N.J.; Pergamon Press, Oxford-London-Paris, 1961. · Zbl 0091.13605
[6] E. B. Dynkin, Markov processes. Vols. I, II, Translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. Die Grundlehren der Mathematischen Wissenschaften, Bände 121, vol. 122, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. · Zbl 0132.37901
[7] Evgenii B. Dynkin and Aleksandr A. Yushkevich, Markov processes: Theorems and problems, Translated from the Russian by James S. Wood, Plenum Press, New York, 1969. E. B. Dynkin and Juschkewitsch. A. A., Sätze und Aufgaben über Markoffsche Prozesse, Aus dem Russischen übersetzt von K. Schürger. Vorwort zur deutschen Ausgabe von K. Krickeberg. Heidelberger Taschenbücher, Band 51, Springer-Verlag, Berlin-New York, 1969 (German).
[8] E. B. Dynkin, Regular Markov processes, Uspehi Mat. Nauk 28 (1973), no. 2(170), 35 – 64 (Russian). · Zbl 0385.60059
[9] E. B. Dynkin, Markov systems and their additive functionals, Ann. Probability 5 (1977), no. 5, 653 – 677. · Zbl 0379.60076
[10] E. B. Dynkin, Additive functionals of non-interacting Markov processes (in preparation). · Zbl 0306.60047
[11] Masatoshi Fukushima, Dirichlet forms and Markov processes, North-Holland Mathematical Library, vol. 23, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1980. · Zbl 0422.31007
[12] Ronald K. Getoor, Markov processes: Ray processes and right processes, Lecture Notes in Mathematics, Vol. 440, Springer-Verlag, Berlin-New York, 1975. · Zbl 0299.60051
[13] Marshall Hall Jr., Combinatorial theory, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967. · Zbl 0196.02401
[14] E. Hille, Functional analysis and semigroups, New York, 1948. · Zbl 0033.06501
[15] Kiyosi Itô, Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), 157 – 169. · Zbl 0044.12202 · doi:10.2969/jmsj/00310157 · doi.org
[16] Shizuo Kakutani, Determination of the spectrum of the flow of Brownian motion, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 319 – 323. · Zbl 0038.29105
[17] Samuel Karlin and Howard M. Taylor, A first course in stochastic processes, 2nd ed., Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. · Zbl 0315.60016
[18] H. P. McKean Jr., Brownian motion with a several-dimensional time, Teor. Verojatnost. i Primenen. 8 (1963), 357 – 378.
[19] Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. · Zbl 0138.10401
[20] G. M. Molčan, A characterization of Gaussian fields with a Markov property, Dokl. Akad. Nauk SSSR 197 (1971), 784 – 787 (Russian).
[21] G. M. Molčan, \?-Markov Gaussian fields, Dokl. Akad. Nauk SSSR 215 (1974), 1054 – 1057 (Russian).
[22] Edward Nelson, Construction of quantum fields from Markoff fields, J. Functional Analysis 12 (1973), 97 – 112. · Zbl 0252.60053
[23] Edward Nelson, The free Markoff field, J. Functional Analysis 12 (1973), 211 – 227. · Zbl 0273.60079
[24] Jacques Neveu, Processus aléatoires gaussiens, Séminaire de Mathématiques Supérieures, No. 34 (Été, 1968), Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). · Zbl 0192.54701
[25] Steven Orey and William E. Pruitt, Sample functions of the \?-parameter Wiener process, Ann. Probability 1 (1973), no. 1, 138 – 163. · Zbl 0284.60036
[26] I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956), 106 – 134. · Zbl 0070.34003
[27] Martin L. Silverstein, Symmetric Markov processes, Lecture Notes in Mathematics, Vol. 426, Springer-Verlag, Berlin-New York, 1974. · Zbl 0296.60038
[28] Barry Simon, The \?(\?)\(_{2}\) Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics. · Zbl 1175.81146
[29] J. B. Walsh, Martingales with a multi-dimensional parameter and stochastic integrals in the plane, Lecture Notes, Université P.&M. Curie, Paris, 1976/1977.
[30] Robert L. Wolpert, Wiener path intersections and local time, J. Funct. Anal. 30 (1978), no. 3, 329 – 340. · Zbl 0403.60069 · doi:10.1016/0022-1236(78)90061-7 · doi.org
[31] Robert L. Wolpert, Local time and a particle picture for Euclidean field theory, J. Funct. Anal. 30 (1978), no. 3, 341 – 357. · Zbl 0464.70016 · doi:10.1016/0022-1236(78)90062-9 · doi.org
[32] R. L. Wolpert, The prediction problem for the Wiener-Yeh process (in preparation).
[33] Eugene Wong and Moshe Zakai, Martingales and stochastic integrals for processes with a multi-dimensional parameter, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 109 – 122. · Zbl 0282.60030 · doi:10.1007/BF00532559 · doi.org
[34] J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc. 95 (1960), 433 – 450. · Zbl 0201.49402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.