Rubinstein, R.; Punch, E. F.; Atluri, S. N. An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields. (English) Zbl 0519.73070 Comput. Methods Appl. Mech. Eng. 38, 63-92 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 18 Documents MSC: 74S05 Finite element methods applied to problems in solid mechanics 74S99 Numerical and other methods in solid mechanics Keywords:existence of spurious kinematic modes; hybrid-stress finite elements; equilibrated stresses; compatible boundary displacements; rank-deficiency of element stiffness matrix; selection of least-order, stable, invariant, stress fields; 20-node cubic element; 8-node cubic element; 4-node square PDF BibTeX XML Cite \textit{R. Rubinstein} et al., Comput. Methods Appl. Mech. Eng. 38, 63--92 (1983; Zbl 0519.73070) Full Text: DOI OpenURL References: [1] Tong, P.; Pian, T.H.H., A variational principle and convergence of a finite element method based on assumed stress distributions, Internat. J. solids and structures, 5, 463-472, (1969) · Zbl 0167.52805 [2] Atluri, S.N.; Tong, P.; Murakawa, H., Recent studies in hybrid and mixed finite element methods in mechanics, (), in press · Zbl 0407.73038 [3] de Veubeke, B.M.Fraeijs, Variational principles and the patch test, Internat. J. numer. meths. engrg., 8, 783-801, (1974) · Zbl 0284.73043 [4] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, Rairo, 8, R2, 129-151, (1974) · Zbl 0338.90047 [5] Babuska, I.; Oden, J.T.; Lee, J.K., Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems, Comput. meths. appl. mech. engrg., Part II—weak hybrid methods, comput. meths. appl. mech. engrg., 14, 1-22, (1978), Part I · Zbl 0401.65068 [6] Burnside, W., Theory of groups of finite order, (1911), Cambridge University Press Cambridge · JFM 42.0151.02 [7] Ying, L.-A.; Atluri, S.N., A hybrid finite element method for Stokes flow: part II—stability and convergence studies, Comput. meths. appl. mech. engrg., 36, 39-60, (1983) · Zbl 0487.76042 [8] Yang, C.-T.; Rubinstein, R.; Atluri, S.N., On some fundamental studies into the stability of hybrid mixed finite element methods for Navier/Stokes equations in solid/fluid mechanics, (), 24-76 [9] Bartholomew, P., Comment on hybrid finite elements, Internat. J. numer. meths. engrg., 10, 968-973, (1976) · Zbl 0331.73079 [10] Spilker, R.L.; Singh, S.P., Three-dimensional hybrid-stress isoparametric quadratic displacement elements, Internat. J. numer. meths. engrg., 18, 445-465, (1982) · Zbl 0479.73062 [11] Ahmad, S.; Irons, B.M., An assumed stress approach to refined isoparametric elements in three dimensions, (), 85-100 [12] Pian, T.H.H.; Chen, D., On the suppression of zero energy deformation modes, (May 20, 1982), Manuscript received from the authors This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.