zbMATH — the first resource for mathematics

Contact problems with bounded friction. Coercive case. (English) Zbl 0519.73095

74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: EuDML
[1] Day M. M.: Normed Linear Spaces. Springer-Verlag, Berlin -Göttingen-Heidelberg (1958). · Zbl 0082.10603
[2] Duvaut G. & Lions J. L.: Les inéquations en mécanique et en physique. Dunod, Paris (1972). · Zbl 0298.73001
[3] Fichera G.: Existence Theorems in Elasticity. Boundary Value Problems of Elasticity with Unilateral Constraints. Springer-Verlag, Berlin-Heidelberg-New York (1972).
[4] Hlaváček I. & Haslinger J.: Solution of contact problems of elastic bodies by finite element method. Part I (in Czech.) Techn. rep., Prague (1977).
[5] Lions J. L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Gauthier-Villars, Paris (1968). · Zbl 0179.41801
[6] Lions J. L. & Magenes E.: Problèmes aux limites non homogènes et applications. vol. 1, Dunod, Paris (1968). · Zbl 0165.10801
[7] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967). · Zbl 1225.35003
[8] Nečas J., Jarušek J. & Haslinger J.: On the Solution of the Variational Inequality to the Signorini Problem with Small Friction. Boll. Unione Mat. Ital. (5) 17-B (1980), 796-811.
[9] Stephenson R.: Introduction to Nuclear Engineering. McGraw-Hill, New York (1958).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.