The coupling of boundary integral and finite element methods for the bidimensional exterior steady Stokes problem. (English) Zbl 0521.76034


76D07 Stokes and related (Oseen, etc.) flows
76M99 Basic methods in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65R20 Numerical methods for integral equations
Full Text: DOI


[1] Bercovier, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Num. Math. 33 pp 211– (1979) · Zbl 0423.65058
[2] Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO, série Analyse Numérique R2 8 pp 129– (1974)
[3] Ciarlet, General Lagrange and Hermite interpolation in R’ with applications to finite element methods, Arch. Rat. Mech. Anal. 46 pp 177– (1972) · Zbl 0243.41004
[4] Girault, Finite element approximation of the Navier Stokes equations (1975)
[5] Giroire , J. Integral equations for exterior problems for the Helmholtz equation. Rapport Interne N{\(\deg\)} 40 1978
[6] Glowinski, On a mixed finite element approximation of the Stokes problem (I), Num. Math. 33 pp 397– (1979) · Zbl 0423.65059
[7] Johnson, On the coupling of boundary integral and finite element methods, Math. of Comp. 35 (152) pp 1063– (1980) · Zbl 0451.65083
[8] Ladyzhenskaya, The mathematical theory of viscous incompressible flow (1969) · Zbl 0184.52603
[9] Le Roux , M. N. Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2 1977 27 60
[10] Nedelec , J. C. Approximation des équations intégrales en mécanique et en physique 1977
[11] Sequeira , A. Couplage entre la méthode des éléments finis et la méthode des équations intégrales 1981
[12] Yosida, Functional analysis (1965)
[13] Zienkiewicz, The coupling of the finite element method and boundary solution procedures, Int. J. for Num. Math. in Eng. 11 pp 355– (1977) · Zbl 0347.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.