×

zbMATH — the first resource for mathematics

The boundedness of the maximal Bochner-Riesz operator on \(L^ 4\)(\(R^ 2\)). (English) Zbl 0522.42015

MSC:
42B25 Maximal functions, Littlewood-Paley theory
42B15 Multipliers for harmonic analysis in several variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc , Studia Math. 44 (1972), 287-299. (errata insert). · Zbl 0215.18303 · eudml:217689
[2] A. Córdoba, The multiplier problem for the polygon , Ann. of Math. (2) 105 (1977), no. 3, 581-588. JSTOR: · Zbl 0361.42005 · doi:10.2307/1970926 · links.jstor.org
[3] A. Córdoba, A note on Bochner-Riesz operators , Duke Math. J. 46 (1979), no. 3, 505-511. · Zbl 0438.42013 · doi:10.1215/S0012-7094-79-04625-8
[4] A. Córdoba, Some remarks on the Littlewood-Paley theory , Rend. Circ. Mat. Palermo (2) (1981), no. suppl. 1, 75-80. · Zbl 0506.42022
[5] A. Córdoba and B. López-Melero, Spherical summation: a problem of E. M. Stein , Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, x, 147-152. · Zbl 0464.42006 · doi:10.5802/aif.842 · numdam:AIF_1981__31_3_147_0 · eudml:74501
[6] S. Igari, Decomposition theorem and lacunary convergence of Riesz-Bochner means of Fourier transforms of two variables , Tôhoku Math. J. (2) 33 (1981), no. 3, 413-419. · Zbl 0467.42017 · doi:10.2748/tmj/1178229404
[7] E. M. Stein, Some problems in harmonic analysis , Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3-20. · Zbl 0445.42006
[8] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces , Princeton University Press, Princeton, N.J., 1971. · Zbl 0232.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.