×

zbMATH — the first resource for mathematics

Best constants occurring with modulus of continuity in the error estimate for spline interpolants of odd degree on equidistant grids. (English) Zbl 0523.41009

MSC:
41A15 Spline approximation
41A05 Interpolation in approximation theory
41A44 Best constants in approximation theory
65D15 Algorithms for approximation of functions
41A25 Rate of convergence, degree of approximation
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Meinardus, G., Merz, G.: Zur periodischen Spline-Interpolation. In: Spline-Funktionen. B?hmer, K., Meinardus, G., Schempp, W. (Eds.) pp. 177-195, Bibliographisches Institut, Mannheim 1974 · Zbl 0333.41007
[2] Reimer, M.: Extremal spline bases. J. Approximation Theory36, 91-98 (1982) · Zbl 0492.41018 · doi:10.1016/0021-9045(82)90057-0
[3] Richards, F.: Best bounds for the uniform periodic spline interpolation operator. J. Approximation Theory7, 302-317 (1973) · Zbl 0252.41008 · doi:10.1016/0021-9045(73)90074-9
[4] Richards, F.: The Lebesgue constants for cardinal spline interpolation. J. Approximation Theory14, 83-92 (1975) · Zbl 0303.41005 · doi:10.1016/0021-9045(75)90080-5
[5] Schoenberg, I.S.: Cardinal interpolation and spline function: II. Interpolation of data of power growth. J. Approximation Theory6, 404-420 (1972) · Zbl 0268.41004 · doi:10.1016/0021-9045(72)90048-2
[6] ter Morsche, H.: On the existence and convergence of interpolating periodic spline functions of arbitrary degree. In: Spline-Funktionen. B?hmer, K., Meinardus, G., Schempp, W. (Eds.), pp. 197-214, Bibliographisches Institut, Mannheim 1974 · Zbl 0293.41008
[7] ter Morsche, H.: On the relations between finite differences and derivatives of cardinal spline functions. In: Spline-Functions. B?hmer, K., Meinardus, G., Schempp, W. (Eds.), pp. 210-219, Berlin-Heidelberg-New York: Springer 1976 · Zbl 0315.41009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.