Reimer, M. Best constants occurring with modulus of continuity in the error estimate for spline interpolants of odd degree on equidistant grids. (English) Zbl 0523.41009 Numer. Math. 44, 407-415 (1984). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 Documents MSC: 41A15 Spline approximation 41A05 Interpolation in approximation theory 41A44 Best constants in approximation theory 65D15 Algorithms for approximation of functions 41A25 Rate of convergence, degree of approximation Keywords:polynomial splines of odd degree; equidistant grids; periodic spline interpolants PDF BibTeX XML Cite \textit{M. Reimer}, Numer. Math. 44, 407--415 (1984; Zbl 0523.41009) Full Text: DOI EuDML References: [1] Meinardus, G., Merz, G.: Zur periodischen Spline-Interpolation. In: Spline-Funktionen. B?hmer, K., Meinardus, G., Schempp, W. (Eds.) pp. 177-195, Bibliographisches Institut, Mannheim 1974 · Zbl 0333.41007 [2] Reimer, M.: Extremal spline bases. J. Approximation Theory36, 91-98 (1982) · Zbl 0492.41018 · doi:10.1016/0021-9045(82)90057-0 [3] Richards, F.: Best bounds for the uniform periodic spline interpolation operator. J. Approximation Theory7, 302-317 (1973) · Zbl 0252.41008 · doi:10.1016/0021-9045(73)90074-9 [4] Richards, F.: The Lebesgue constants for cardinal spline interpolation. J. Approximation Theory14, 83-92 (1975) · Zbl 0303.41005 · doi:10.1016/0021-9045(75)90080-5 [5] Schoenberg, I.S.: Cardinal interpolation and spline function: II. Interpolation of data of power growth. J. Approximation Theory6, 404-420 (1972) · Zbl 0268.41004 · doi:10.1016/0021-9045(72)90048-2 [6] ter Morsche, H.: On the existence and convergence of interpolating periodic spline functions of arbitrary degree. In: Spline-Funktionen. B?hmer, K., Meinardus, G., Schempp, W. (Eds.), pp. 197-214, Bibliographisches Institut, Mannheim 1974 · Zbl 0293.41008 [7] ter Morsche, H.: On the relations between finite differences and derivatives of cardinal spline functions. In: Spline-Functions. B?hmer, K., Meinardus, G., Schempp, W. (Eds.), pp. 210-219, Berlin-Heidelberg-New York: Springer 1976 · Zbl 0315.41009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.