×

zbMATH — the first resource for mathematics

Truncated-Newton algorithms for large-scale unconstrained optimization. (English) Zbl 0523.90078

MSC:
90C30 Nonlinear programming
49M37 Numerical methods based on nonlinear programming
65K05 Numerical mathematical programming methods
49M15 Newton-type methods
PDF BibTeX Cite
Full Text: DOI
References:
[1] O. Axelsson, ”Solution of linear systems of equations: Iterative methods”, in: V.A. Barker, ed.,Sparse matrix techniques. (Springer-Verlag, New York, 1976) pp. 1–51.
[2] R. Chandra, ”Conjugate gradient methods for partial differential equations”, Ph.D. dissertation, Yale University (New Haven, CT, 1978), Also available as Department of Computer Science Research Report No. 129.
[3] R. Chandra, S.C. Eisenstat and M.H. Schultz, ”The modified conjugate residual method for partial differential equations”, in: R. Vichnevetsky, ed.,Advance in computer methods for partial differential equations II, Proceedings of the Second International Symposium on Computer Methods for Partial Differential Equations, Lehigh University, Bethlehem, PA (International Association for Mathematics and Computers in Simulation, June 1977) pp. 13–19.
[4] A.R. Curtis, M.J.D. Powell and J.K. Reid, ”On the estimation of sparse Jacobian matrices”,Journal of the Institute of Mathematics and its Applications 13 (1974) 117–119. · Zbl 0273.65036
[5] R.S. Dembo, S.C. Eisenstat and T. Steihaug, ”Inexact Newton methods”,SIAM Journal of Numerical Analysis 19 (1982) 400–408. · Zbl 0478.65030
[6] R.S. Dembo and J.G. Klincewicz, ”A scaled reduced gradient algorithm for network flow problems with convex separable costs”,Mathematical Programming Studies 15 (1981) 125–147. · Zbl 0477.90025
[7] R. S. Dembo and T. Steihaug, ”A test problem for large-scale unconstrained minimization”, School of Organization and Management, Yale University (New Haven, CT) Working Paper Series B (in preparation). · Zbl 0559.90080
[8] J.E. Dennis Jr. and J.J. MorĂ©, ”Quasi-Newton methods, motivation and theory”,SIAM Review 19 (1977) 46–89. · Zbl 0356.65041
[9] R. Fletcher, ”Conjugate gradient methods for indefinite systems”, in: G.A. Watson, ed.,Numerical Analysis, Proceedings of Biennial Conference, Dundee, Scotland, 1975 (Springer-Verlag, New York, 1976) pp. 73–89.
[10] R. Fletcher,Unconstrained optimization (John Wiley and Sons, New York, 1980). · Zbl 0439.93001
[11] N.K. Garg and R.A. Tapia, ”QDN: A variable storage algorithm for unconstrained optimization”, Technical Report, Department of Mathematical Sciences, Rice University (Houston, TX, 1977).
[12] P.E. Gill and W. Murray, ”Safeguarded steplength algorithm for optimization using descent methods”, Technical Report NPL NA 37, National Physical Laboratory (1974).
[13] P.E. Gill, W. Murray and S.G. Nash, ”A conjugate-gradient approach to Newton-type methods”, presented at ORSA/TIMS Joint National Meeting (Colorado Springs, November 1980).
[14] P.E. Gill, W. Murray and M.H. WrightPractical optimization (Academic Press, New York, 1981).
[15] M.R. Hestenes,Conjugate direction methods in optimization (Springer-Verlag New York, 1980). · Zbl 0439.49001
[16] M.R. Hestenes and E. Stiefel, ”Methods of conjugate gradients for solving linear systems”,Journal of Research of the National Bureau of Standards 49 (1952) 409–436. · Zbl 0048.09901
[17] D.G. Luenberger, ”Hyperbolic pairs in the method of conjugate gradients”,SIAM Journal on Applied Mathematics 17 (1969) 1263–1267. · Zbl 0187.09704
[18] B. Murtagh and M. Saunders, ”Large-scale linearly constrained optimization”,Mathematical Programming 14 (1978) 41–72. · Zbl 0383.90074
[19] J. Nocedal, ”Updating Quasi-Newton matrices with limited storage”,Mathematics of Computation 35 (1980) 773–782. · Zbl 0464.65037
[20] D.P. O’Leary, ”A discrete Newton algorithm for minimizing a function of many variables”,Mathematical Programming 23 (1982) 20–33. · Zbl 0477.90055
[21] J.M. Ortega and W.C. RheinboldtIterative solution of nonlinear equations in several variables (Academic Press, New York, 1970).
[22] M.J.D. Powell and Ph.L. Toint, ”On the estimation of sparse Hessian matrices”,SIAM Journal on Numerical Analysis 16 (1979) 1060–1074. · Zbl 0426.65025
[23] D.F. Shanno, ”On the convergence of a new conjugate gradient method”,SIAM Journal on Numerical Analysis 15 (1978) 1247–1257. · Zbl 0408.90071
[24] D.F. Shanno and K.H. Phua, ”Algorithm 500: Minimization of unconstrained multivariate functions”,Transactions on Mathematical Software 2 (1976) 87–94. · Zbl 0319.65042
[25] T. Steihaug, ”Quasi-Newton methods for large scale nonlinear problems”, Ph.D. dissertation, Yale University (New Haven, CT, 1980). Also available as Working Paper, Series B No. 49.
[26] Ph.L. Toint, ”Some numerical results using a sparse matrix updating formula in unconstrained optimization”,Mathematics of Computation 32 (1978) 839–851. · Zbl 0381.65036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.