Stability in Yang-Mills theories. (English) Zbl 0524.58020


53D50 Geometric quantization
58J20 Index theory and related fixed-point theorems on manifolds
53C80 Applications of global differential geometry to the sciences
57R20 Characteristic classes and numbers in differential topology
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
81T08 Constructive quantum field theory


Zbl 0408.53023
Full Text: DOI


[1] Atiyah, M.F.: Geometry of Yang-Mills fields (Fermi lectures). Scuola Normale Superiore, Pisa (1979)
[2] Bourguignon, J.P., Lawson, H.B., Jr.: Yang-Mills theory; its physical origin and differential geometric aspects. In: Sminar on differential geometry, Yau, S.-T. (ed.). Ann. Math. Stud.102, Princeton (1982) · Zbl 0482.58007
[3] Bourguignon, J.P., Lawson, H.P., Jr., Simons, J.: Stability and gap phenomena for Yang-Mills fields. Proc. Natl. Acad. Sci. (USA)76, 1550 (1979) · Zbl 0408.53023
[4] Atiyah, M.F., Jones, J.D.S.: Topological aspects of Yang-Mills theory. Commun. Math. Phys.61, 97 (1978) · Zbl 0387.55009
[5] Jaffe, A., Taubes, C.H.: Vortices and monopoles. Boston: Birkhäuser 1980 · Zbl 0457.53034
[6] Taubes, C.H.: The existence of a non-monimal solution to the SU(2) Yang-Mills-Higgs equations on ?3, Part I: Commun. Math. Phys.86, 257 (1982); Part II: Commun. Math. Phys.86, 299 (1982) · Zbl 0514.58016
[7] Hitchin, N.: Compact, four dimensional Einstein manifolds. J. Diff. Geom.9, 435 (1974) · Zbl 0281.53039
[8] Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge Ampère equation. I. Commun. Pure Appl. Math.31, 339 (1978) · Zbl 0369.53059
[9] Penrose, R.: Nonlinear gravitons and curved twistor theory. Gen. Rel. Grav.7, 31 (1976) · Zbl 0354.53025
[10] Gibbons, G.W., Pope, C.B.: The positive action conjecture and asymptotically Euclidean metrics in quantum gravity. Commun. Math. Phys.61, 239 (1978) · Zbl 0389.53013
[11] Hitchin, N.: Polygons and gravitons. Proc. Camb. Philos. Soc.85, 465 (1979) · Zbl 0405.53016
[12] Palais, R.: Ljusternik-Snirelman theory on Banach manifolds. Topology5, 115 (1966) · Zbl 0143.35203
[13] Ells, J., Wood, J.C.: Harmonic maps from surfaces to complex projective spaces (preprint)
[14] Segal, G.: Topology of spaces of rational functions. Acta Math.143, 39 (1979) · Zbl 0427.55006
[15] Weinberg, E.: Parameter counting for multi-monopole solutions. Phys. Rev. D20, 936 (1976)
[16] Parker, T.: Gauge theories on 4-dimensional, Riemannian manifolds. Commun. Math. Phys.85, 563 (1982) · Zbl 0502.53022
[17] Freed, D., Freedman, M., Uhlenbeck, K.K.: Gauge theories and 4-manifolds. MSRI Berkeley preprint (1983)
[18] Bourguignon, J.P., Lawson, H.B., Jr.: Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys.79, 189 (1981) · Zbl 0475.53060
[19] DeTurck, D., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Sci. Ec. Norm. Sup.14, 249 (1981) · Zbl 0486.53014
[20] Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in 4-dimensional Riemannian geometry. Proc. R. Soc. London A362, 425 (1978) · Zbl 0389.53011
[21] Uhlenbeck, K.: Chern numbers of Sobolev connections. Commun. Math. Phys. (to appear) · Zbl 0586.53018
[22] Forgacs, P., Manton, N.: Space-time symmetries in gauge theories. Commun. Math. Phys.72, 15 (1980)
[23] Aubin, T.: Nonlinear analysis on manifolds. Monge-Ampère equations. Berlin, Heidelberg, New York: Springer 1982 · Zbl 0512.53044
[24] Parker, T., Taubes, C.H.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys.84, 224 (1982) · Zbl 0528.58040
[25] Gromov, M., Lawson, H.B., Jr.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds (preprint)
[26] Agmon, S.: Elliptic boundary value problems. New York: Van Nostrand 1965 · Zbl 0142.37401
[27] Lockhart, R.B., McOwen, R.C.: On elliptic systems in ? n . Acta Math. (to appear) · Zbl 0517.35031
[28] Nirenberg, L., Walker, H.: Null spaces of elliptic partial differential operators on ? n . J. Math. Anal. Appl.42, 271 (1973) · Zbl 0272.35029
[29] Callias, C.: Axial anomalies and index theorems on open spaces. Commun. Math. Phys.62, 213 (1978) · Zbl 0416.58024
[30] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1980 · Zbl 0435.47001
[31] Uhlenbeck, K.K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys.83, 11 (1982) · Zbl 0491.58032
[32] Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressable flow. London: Gordon and Breach 1963 · Zbl 0121.42701
[33] Prasad, M.K., Sommerfield, C.: Exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett.35, 760 (1975)
[34] Maison, D.: Uniqueness of the Prasad-Sommerfield monopole solution. Nucl. Phys. B182, 114 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.