×

zbMATH — the first resource for mathematics

Counting models in universal Horn classes. (English) Zbl 0525.03028

MSC:
03C95 Abstract model theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. T. Baldwin andA. H. Lachlan,On universal Horn classes categorical in some infinite power, Algebra Universalis3 (1973), 98–111. · Zbl 0272.02078
[2] J. T. Baldwin andJ. Saxl,Logical stability in group theory, Jour. Austral. Math. Soc. XXI, series A (1976), 267–276. · Zbl 0342.02036
[3] W. Baur, 0 categorical modules, J. Sym. Logic40 (1975), 213–220. · Zbl 0309.02059
[4] S. Burris,Boolean powers Algebra Universalis5 (1975), 341–360. · Zbl 0328.08003
[5] S. Burris andR. McKenzie,Decidability and Boolean representations,Memoirs of the Amer. Math. Soc. Vol. 32, No. 246 (1981) · Zbl 0483.03019
[6] P. C. Eklof andG. Sabbagh,Model-completions and modules, Annals. Math. Logic2 (1971), 251–295. · Zbl 0227.02029
[7] S. Feferman andR. L. Vaught,The first-order properties of products of algebraic systems, Fund. Math.47 (1959), 57–103. · Zbl 0088.24803
[8] R. Freese andR. McKenzie,The commutator, an overview, [preprint 1981].
[9] S. Garavaglia,Elementary equivalence of modules, [preprint 1978]. · Zbl 0409.03041
[10] S. Garavaglia,Direct product decomposition of theories of modules, J. Sym. Logic.44 (1979), 77–88. · Zbl 0438.03038
[11] S. Garavaglia,Decomposition of totally transcendental modules, J. Sym. Logic.45 (1980), 155–164. · Zbl 0453.03036
[12] S. Givant,The number of non-isomorphic countable models of certain universal Horn classes, Amer. Math. Soc. Notices25 (1978), abstract A-624.
[13] S. Givant,The number of non-isomorphic countable models of certain universal Horn classes, Algebra Universalis (to appear). · Zbl 0497.03026
[14] H. P. Gumm,An easy way to the commutator in modular varieties, Archiv der Math. (Basel) (to appear). · Zbl 0438.08004
[15] J. Hagemann andC. Herrmann,A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity, Archiv der Math. (Basel)32 (1979), 234–245. · Zbl 0419.08001
[16] C. Herrmann,Affine algebras in congruence modular varieties, Acta. Sci. Math. (Szeged)41 (1979), 119–125. · Zbl 0408.08003
[17] N. Jacobson, BASIC ALGEBRA, II, W. H. Freeman and Co., San Francisco, 1980.
[18] B. Jónsson andA. Tarski,On two properties of free algebras, Math. Scand9 (1961), 95–101. · Zbl 0111.02002
[19] J. Łos,On the categoricity in power of elementary deductive systems, Colloq. Math. (1954), 58–62. · Zbl 0055.00505
[20] L. Marcus,The number of countable models of a theory of one unary operation, Fund. Math. (to appear). · Zbl 0363.02055
[21] A. Miller,Vaught’s conjecture for theories of one unary operation, Fund. Math. (to appear). · Zbl 0492.03012
[22] J. D. Monk andW. Rossabach,The number of rigid Boolean algebras, Algebra Universalis9 (1979), 207–210. · Zbl 0416.06016
[23] J. D. Monk andR. M. Solovay,On the number of complete Boolean algebras, Algebra Universalis2 (1972), 365–369. · Zbl 0261.06010
[24] G. Sabbach,Categoricite et stabilitie: quelques exemples parmi les groupes et anneaux, C. R. Acad. Sc. Paris, series A (10 Mars 1975), 603.
[25] S. Shelah, Classification theory and the number of non-isomorphic models, North Holland, Amsterdam, 1978. · Zbl 0388.03009
[26] J. Steel,On Vaught’s conjecture, Cabal Seminar 76–77, Lecture Notes no. 689, Springer-Verlag.
[27] S. Swierczkoski,On isomorphic free algebras, Fund. Math. (1961), 35–44. · Zbl 0104.25601
[28] R. B. Warfield,Purity and algebraic compactness for modules, Pacific J. Math.28 (1969), 699–719. · Zbl 0172.04801
[29] S. Shelah,The lazy model-theoretician’s guide to stability, Logique et Analyse, vols.71–72 (1975), 241–308. · Zbl 0359.02052
[30] C. Faith, ALGEBRA II, RING THEORY, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.