Nguen Le An’ Generalized homotopy axiom. (English) Zbl 0526.55008 Math. Notes 33, 58-64 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 55N40 Axioms for homology theory and uniqueness theorems in algebraic topology 55N35 Other homology theories in algebraic topology 55N05 Čech types Keywords:strong homotopy axiom for cohomology theories; homology theories with compact supports; Alexander-Spanier cohomology PDF BibTeX XML Cite \textit{Nguen Le An'}, Math. Notes 33, 58--64 (1983; Zbl 0526.55008) Full Text: DOI References: [1] E. G. Sklyarenko, ?Homology theory and the exactness axiom,? Usp. Mat. Nauk,24, No. 5, 87-140 (1969). [2] W. S. Massey, Homology and Cohomology Theory (1978). [3] K. Sigmon, ?A strong homotopy axiom for Alexander cohomology,? Proc. Am. Math. Soc.,31, No. 1, 271-275 (1972). · Zbl 0211.55001 · doi:10.1090/S0002-9939-1972-0287533-9 [4] S. Deo, ?On the tautness property of Alexander-Spanier cohomology,? Proc. Am. Math. Soc.,52, 441-444 (1975). · Zbl 0273.55008 · doi:10.1090/S0002-9939-1975-0380773-2 [5] V. Bartik, ?Aleksandrov-Cech cohomology and mappings into Eilenberg-MacLane polyhedra,? Mat. Sb.,76, No. 2, 231-238 (1968). · Zbl 0172.48301 [6] S. T. Hu, Homotopy Theory, Academic Press (1959). [7] J. Milnor, ?On spaces having the homotopy type of a CW-complex,? Trans. Am. Math. Soc.,90, No. 2, 272-280 (1959). · Zbl 0084.39002 [8] G. Whitehead, Latest Achievements in Homotopy Theory [Russian translation], Mir, Moscow (1974). [9] A. Dold and R. Thom, ?Quasifaserungen und unendliche symmetrische Produkte,? Ann. Math., Ser. 2,67, No. 2, 239-281 (1958). · Zbl 0091.37102 · doi:10.2307/1970005 [10] E. G. Sklyarenko, ?Uniqueness theorems in homology theory,? Mat. Sb.,85, 201-223 (1971). · Zbl 0214.21701 [11] S. V. Petkova, ?Axioms of homology theory,? Dokl. Akad. Nauk SSSR,204, No. 3, 557-560 (1972). · Zbl 0272.55014 [12] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press (1952). · Zbl 0047.41402 [13] E. H. Spanier, Algebraic Topology, McGraw-Hill (1966). [14] S. MacLane, Homology, Springer-Verlag (1975). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.