×

zbMATH — the first resource for mathematics

Generalized homotopy axiom. (English) Zbl 0526.55008
MSC:
55N40 Axioms for homology theory and uniqueness theorems in algebraic topology
55N35 Other homology theories in algebraic topology
55N05 Čech types
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. G. Sklyarenko, ?Homology theory and the exactness axiom,? Usp. Mat. Nauk,24, No. 5, 87-140 (1969).
[2] W. S. Massey, Homology and Cohomology Theory (1978).
[3] K. Sigmon, ?A strong homotopy axiom for Alexander cohomology,? Proc. Am. Math. Soc.,31, No. 1, 271-275 (1972). · Zbl 0211.55001 · doi:10.1090/S0002-9939-1972-0287533-9
[4] S. Deo, ?On the tautness property of Alexander-Spanier cohomology,? Proc. Am. Math. Soc.,52, 441-444 (1975). · Zbl 0273.55008 · doi:10.1090/S0002-9939-1975-0380773-2
[5] V. Bartik, ?Aleksandrov-Cech cohomology and mappings into Eilenberg-MacLane polyhedra,? Mat. Sb.,76, No. 2, 231-238 (1968). · Zbl 0172.48301
[6] S. T. Hu, Homotopy Theory, Academic Press (1959).
[7] J. Milnor, ?On spaces having the homotopy type of a CW-complex,? Trans. Am. Math. Soc.,90, No. 2, 272-280 (1959). · Zbl 0084.39002
[8] G. Whitehead, Latest Achievements in Homotopy Theory [Russian translation], Mir, Moscow (1974).
[9] A. Dold and R. Thom, ?Quasifaserungen und unendliche symmetrische Produkte,? Ann. Math., Ser. 2,67, No. 2, 239-281 (1958). · Zbl 0091.37102 · doi:10.2307/1970005
[10] E. G. Sklyarenko, ?Uniqueness theorems in homology theory,? Mat. Sb.,85, 201-223 (1971). · Zbl 0214.21701
[11] S. V. Petkova, ?Axioms of homology theory,? Dokl. Akad. Nauk SSSR,204, No. 3, 557-560 (1972). · Zbl 0272.55014
[12] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press (1952). · Zbl 0047.41402
[13] E. H. Spanier, Algebraic Topology, McGraw-Hill (1966).
[14] S. MacLane, Homology, Springer-Verlag (1975).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.