×

zbMATH — the first resource for mathematics

L-structured matrices and linear matrix equations. (English) Zbl 0527.15006

MSC:
15A24 Matrix equations and identities
15A09 Theory of matrix inversion and generalized inverses
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baksalary J. K., Linear Algebra Appl. 25 pp 41– (1979) · Zbl 0403.15010 · doi:10.1016/0024-3795(79)90004-1
[2] Baksalary J. K., Linear Algebra Appl. 30 pp 141– (1980) · Zbl 0437.15005 · doi:10.1016/0024-3795(80)90189-5
[3] Bellman R., Introduction to matrix analysis (1970) · Zbl 0216.06101
[4] Ben-Israel A., Generalized inverses: theory and applications (1974) · Zbl 0305.15001
[5] Cecioni F., Ann. Scu. Norm. Sup. Pisa, Sc. Fis. e Mat. 11 (1974)
[6] Cline R. E., S1AM J. Appl. Math. 12 pp 588– (1964)
[7] Flanders H., SIAM J. Appl. Math. 32 pp 707– (1977) · Zbl 0385.15008 · doi:10.1137/0132058
[8] Hadley G., Linear Algebra (1961)
[9] Henderson H. V., Canadian J. Statist. 7 pp 65– (1979) · Zbl 0435.15022 · doi:10.2307/3315017
[10] Hodges J. H., Ann. Mat. Pura Appl. 44 pp 245– (1957) · Zbl 0082.02102 · doi:10.1007/BF02415202
[11] Rao C. R., Sankhy[abar] 30 pp 167– (1968)
[12] Lancaster P., SIAM Rev. 12 pp 544– (1970) · Zbl 0209.06502 · doi:10.1137/1012104
[13] Macduffee C. C., The theory of matrices · Zbl 0007.19507
[14] Magnus J. R., Ann. Statist. 7 pp 381– (1979) · Zbl 0414.62040 · doi:10.1214/aos/1176344621
[15] Magnus J. R, S1AM J Alg. Discr. Math. 1 pp 422– (1980) · Zbl 0497.15014 · doi:10.1137/0601049
[16] Marcus M., A survey of matrix theory and matrix inequalities (1964) · Zbl 0126.02404
[17] Mcdonald R. P., General Systems 18 pp 37– (1973)
[18] Moore E. H., Bull. Amer. Math. Soc. 26 pp 394– (1920)
[19] Moore E. H., General Analysis 1 (1935) · JFM 61.0433.06
[20] Neudecker H., J. Amer. Statist. Assoc. 64 pp 953– (1969) · doi:10.1080/01621459.1969.10501027
[21] Neudecker H., On Jacobians of transformations with skew-symmetric, strictly (lower) triangular or diagonal matrix arguments (1980) · Zbl 0528.15005
[22] Penrose R, Proc Cambridge Philos Soc 51 pp 406– (1955) · doi:10.1017/S0305004100030401
[23] Rao C R, Generalized inverse of matrices and its applications (1971) · Zbl 0236.15004
[24] Roth W F., Bull. Amer Math. Soc. 40 pp 461– (1934) · Zbl 0009.29002 · doi:10.1090/S0002-9904-1934-05899-3
[25] Roth W E., Proc Amer Math. Soc. 3 pp 392– (1952)
[26] Swaminathan H., General Systems 21 pp 95– (1976)
[27] Sylvester M., Comptes Rendus des SĂ©ances de I’Academic des Sciences 21 (1976)
[28] Tracy D. S., J Amer. Statist. Assoc. 64 pp 1576– (1969) · doi:10.1080/01621459.1969.10501078
[29] Tracy, D. S. and Singh, R. P. Some modifications of matrix differentiation for evaluating Jacobians of symmetric matrix transformations. Proceedings of a Symposium in Honor of Paul S. Dwyer. Edited by: Tracy, Derrick S. pp.203–224. Windsor, Ontario: Univ. Windsor. Symmetric Functions in Statistics · Zbl 0276.15011
[30] Tracy D. S., Statistica Neerlandica 26 pp 143– (1972) · Zbl 0267.15009 · doi:10.1111/j.1467-9574.1972.tb00199.x
[31] Vetter W. J., Linear Algebra Appl. 10 pp 181– (1975) · Zbl 0307.15003 · doi:10.1016/0024-3795(75)90010-5
[32] Wimmer H., SIAM Rev. 14 pp 318– (1972) · Zbl 0244.15006 · doi:10.1137/1014034
[33] Wimmer H., Math. Nachr. 59 pp 213– (1974) · Zbl 0327.15017 · doi:10.1002/mana.19740590116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.