×

zbMATH — the first resource for mathematics

Toeplitz operators on bounded symmetric domains. (English) Zbl 0527.47019

MSC:
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces
17C65 Jordan structures on Banach spaces and algebras
46L05 General theory of \(C^*\)-algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. A. Berger and L. A. Coburn, Wiener-Hopf operators on \?\(_{2}\), Integral Equations Operator Theory 2 (1979), no. 2, 139 – 173. · Zbl 0434.47019
[2] Charles A. Berger, Lewis A. Coburn, and Adam Korányi, Opérateurs de Wiener-Hopf sur les sphères de Lie, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 21, A989 – A991 (French, with English summary). · Zbl 0436.47021
[3] L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators, Annals of Mathematics Studies, vol. 99, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. · Zbl 0469.47021
[4] Louis Boutet de Monvel, On the index of Toeplitz operators of several complex variables, Invent. Math. 50 (1978/79), no. 3, 249 – 272. · Zbl 0398.47018
[5] Hel Braun and Max Koecher, Jordan-Algebren, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 128, Springer-Verlag, Berlin-New York, 1966 (German). · Zbl 0145.26001
[6] Robert Braun, Wilhelm Kaup, and Harald Upmeier, A holomorphic characterization of Jordan \?*-algebras, Math. Z. 161 (1978), no. 3, 277 – 290. · Zbl 0385.32002
[7] L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433 – 439. · Zbl 0271.46052
[8] Jacques Dixmier, \?*-algebras, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett; North-Holland Mathematical Library, Vol. 15. · Zbl 0372.46058
[9] Ronald G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. · Zbl 0247.47001
[10] Alexander Dynin, Inversion problem for singular integral operators: \?*-approach, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 10, 4668 – 4670. · Zbl 0408.47031
[11] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[12] L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Translated from the Russian by Leo Ebner and Adam Korányi, American Mathematical Society, Providence, R.I., 1963.
[13] J. Janas, Toeplitz operators related to certain domains in \?\(^{n}\), Studia Math. 54 (1975), no. 1, 73 – 79. · Zbl 0337.47016
[14] Nicholas P. Jewell and Steven G. Krantz, Toeplitz operators and related function algebras on certain pseudoconvex domains, Trans. Amer. Math. Soc. 252 (1979), 297 – 312. · Zbl 0371.47029
[15] Kenneth D. Johnson, On a ring of invariant polynomials on a Hermitian symmetric space, J. Algebra 67 (1980), no. 1, 72 – 81. · Zbl 0491.22007
[16] Max Koecher, An elementary approach to bounded symmetric domains, Rice University, Houston, Tex., 1969. · Zbl 0217.10901
[17] Adam Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332 – 350. · Zbl 0138.06601
[18] Daniel A. Levine, Systems of singular integral operators on spheres, Trans. Amer. Math. Soc. 144 (1969), 493 – 522. · Zbl 0196.15803
[19] Ottmar Loos, Jordan pairs, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-New York, 1975. · Zbl 0301.17003
[20] -, Bounded symmetric domains and Jordan pairs, Univ. of California, Irvine, 1977.
[21] Paul S. Muhly and Jean N. Renault, \?*-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), no. 1, 1 – 44. · Zbl 0509.46049
[22] Raghavan Narasimhan, Several complex variables, The University of Chicago Press, Chicago, Ill.-London, 1971. Chicago Lectures in Mathematics. · Zbl 0223.32001
[23] S. C. Power, Commutator ideals and pseudodifferential \?*-algebras, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 124, 467 – 489. · Zbl 0422.46050
[24] Iain Raeburn, On Toeplitz operators associated with strongly pseudoconvex domains, Studia Math. 63 (1978), no. 3, 253 – 258. · Zbl 0398.47017
[25] Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/1970), 61 – 80 (German). · Zbl 0219.32013
[26] Masaru Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441 – 475. · Zbl 0313.32042
[27] Harald Upmeier, Jordan algebras and harmonic analysis on symmetric spaces, Amer. J. Math. 108 (1986), no. 1, 1 – 25 (1986). · Zbl 0603.46055
[28] U. Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex domains in \?\(^{n}\), J. Functional Analysis 9 (1972), 349 – 373. · Zbl 0241.47023
[29] Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. · Zbl 0265.22020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.