×

zbMATH — the first resource for mathematics

A numerical analysis of a class of problems in elastodynamics with friction. (English) Zbl 0527.73079

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74M20 Impact in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49J40 Variational inequalities
74S99 Numerical and other methods in solid mechanics
74-04 Software, source code, etc. for problems pertaining to mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amerio, L., Su un problema di vincoli unilaterali per l’equazione non omogenea delia corda vibrante, Inst. appl. calc. mauro Picone publ. ser. D 109, 3-11, (1976) · Zbl 0432.73062
[2] Amerio, L., On the motion of a string through a moving ring with a continuously variable diameter, Atti accad. naz. lincei rend., 62, 134-142, (1977) · Zbl 0378.73057
[3] Amerio, L.; Prouse, G., Study of the motion of a string vibrating against an obstacle, Rend. mat., 2, 563-585, (1975) · Zbl 0327.73070
[4] Babuska, I.; Aziz, A.K., Survey lectures on the mathematical foundations of the finite element method, (), 1-359
[5] Cabannes, H., Mouvement d’une corde vibrante soumise à un frottement solide, C.R. acad. sci. Paris, 287A, 671-673, (1978) · Zbl 0393.70022
[6] Cabannes, H., Propagations des discontinuités dans LES cordes vibrantes soumises à un frottement solide, C.R. acad. sci. Paris, 289B, 127-130, (1979)
[7] Campos, L.T., A numerical analysis of a class of contact problems with friction in elastostatics, () · Zbl 0504.73050
[8] Campos, L.T.; Oden, J.T.; Kikuchi, N., A numerical analysis of a class of contact problems with friction, Comput. meths. appl. mech. engrg., 34, 821-845, (1982) · Zbl 0504.73050
[9] Ciarlet, P.O., The finite element method for elliptic problems, (1978), North-Holland Amsterdam
[10] Citrini, C., Sull’urto parziàlmente elastico o anelastico di una corda vibrante contro un ostacolo, Atti accad. naz. lincei rend., 59, 6, 667-676, (1975) · Zbl 0355.73065
[11] Citrini, C., The energy theorem in the impact of a string vibrating against a point shaped obstacle, Atti accad. naz. lincei rend., 62, 143-149, (1977) · Zbl 0384.70035
[12] Duvaut, G.; Lions, J.L., Inequalities in mechanics and physics, (1976), Springer-Verlag Berlin · Zbl 0331.35002
[13] Glowinski, R.; Lions, J.L.; Trémolières, R., Numerical analysis of variational inequalities, (1981), North-Holland Amsterdam · Zbl 0508.65029
[14] Hughes, T.J.R.; Taylor, R.L.; Sackman, J.L.; Curnier, A.; Kanoknukulchai, W., A finite element method for a class of contact-impact problems, Comput. meths. appl. mech. engrg., 8, 249-276, (1976) · Zbl 0367.73075
[15] Hughes, T.J.R.; Taylor, R.L.; Kanoknukulchai, W., A finite element method for large displacement contact and impact problems, (), 478-495
[16] Kalker, J.J., The mechanics of the contact between deformable bodies, () · Zbl 0367.73026
[17] Kalker, J.J., A survey of the mechanics of contact between solid bodies, Z. angew. math. mech., 57, T3-T17, (1977) · Zbl 0367.73026
[18] Kikuchi, N.; Oden, J.T., Contact problems in elasticity, () · Zbl 0685.73002
[19] Lee, J.K.; Kamemura, K., Analysis of elastodynamics with unilateral supports, (), 777-780
[20] Lötstedt, P., Analysis of some difficulties encountered in the simulation of mechanical systems with constraints, Dept. num. anal. comp. sc., royal inst. tech.,Stockholm, TRITA-NA-7914, (1979) · Zbl 0443.70017
[21] Lötstedt, P., On a penalty function method for the simulation of mechanical systems subject to constraints, Dept. num. anal. comp. sc., royal inst. tech., Stockholm, TRITA-NA-7919, (1979) · Zbl 0442.70021
[22] Lötstedt, P., A numerical method for the simulation of mechanical systems with unilateral constraints, Dept. num. anal. comp. sc., royal inst. tech., Stockholm, TRITA-NA-7920, (1979)
[23] Oden, J.T.; Carey, G.F., Finite elements: mathematical aspects, (1983), Prentice-Hall Englewood Cliffs, NJ · Zbl 0496.65055
[24] Oden, J.T.; Pires, E.B., Contact problems in elastostatics with non-local friction laws, () · Zbl 0499.73091
[25] Panagiotopoulos, P.D., A variational inequality approach to the dynamic unilateral contact problem of elastoplastic foundations, (), 47-58
[26] Pires, E.B., Analysis of nonclassical friction laws for contact problems in elastostatics, () · Zbl 0545.73098
[27] Rock, T.A.; Hinton, E., A finite element method for the free vibration of plates allowing for transverse shear deformation, Comput. & structures, 6, 37-44, (1976) · Zbl 0332.73075
[28] Schatzman, M., A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle, J. math. anal. appl., 73, 138-191, (1980) · Zbl 0497.73059
[29] Schatzman, M., Un problème hyperbolique du 2ème ordre avec constrainte unilatérale: la corde vibrante avec obstacle ponctuel, J. differential equations, 36, 295-334, (1980) · Zbl 0423.35058
[30] Talaslidis, D.; Panagiotopoulos, P.D., A linear finite element approach to the solution of the variational inequalities arising in contact problems of structural dynamics, Internat. J. numer. meth. engrg., 8, 1505-1520, (1982) · Zbl 0489.73078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.