×

Stability of Schrödinger eigenvalue problems. (English) Zbl 0528.35023


MSC:

35J10 Schrödinger operator, Schrödinger equation
35B20 Perturbations in context of PDEs
35P05 General topics in linear spectral theory for PDEs
47A10 Spectrum, resolvent
47F05 General theory of partial differential operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aguilar, J., Combes, J.M.: Commun. Math. Phys.22, 269–279 (1971) · Zbl 0219.47011
[2] Aventini, P., Seiler, R.: Commun. Math. Phys.41, 119–134 (1975)
[3] Avron, J.E., Herbst, I.W., Simon, B.: Duke Math. J.45, 847–883 (1978) · Zbl 0399.35029
[4] Avron, J.E., Herbst, I.W., Simon, B.: Commun. Math. Phys.79, 529–574 (1981) · Zbl 0464.35086
[5] Enss, V.: Commun. Math. Phys.52, 233–238 (1977)
[6] Herbst, I.W.: Commun. Math. Phys.64, 279–298 (1979) · Zbl 0447.47028
[7] Herbst, I.W., Simon, B.: Commun. Math. Phys.80, 181–216 (1981) · Zbl 0473.47038
[8] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[9] Morgan III, J.D., Simon, B.: Int. J. Quantum Chem.17, 1143–1166 (1980)
[10] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, selfadjointness. New York: Academic Press 1975 · Zbl 0308.47002
[11] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press 1978 · Zbl 0401.47001
[12] Schechter, M.: Spectra of partial differential operators. Amsterdam, London: North-Holland 1971 · Zbl 0225.35001
[13] Weyl, H.: Rend. Circ. Mat. Palermo27, 373–392 (1909); Gesammelte Abhandlungen, Vol. I, pp. 175–194. Berlin, Heidelberg, New York: Springer 1968 · JFM 40.0395.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.