×

Infinitesimal variations of Hodge structure. I. (English) Zbl 0531.14006

Because of horizontality, a generic polarized Hodge structure of weight \(w>1\) does not arise from geometry. Moreover, because the classifying space \(D\) for \(H\) is homogeneous under the action of \(G_ R\), there are no linear algebra invariants which can distinguish between geometric and non-geometric structures. A possible solution to this difficulty is given by the notion of an infinitesimal variation of Hodge structure (IVHS). Such an object, essentially the differential of a variation of Hodge structure at one point, is given formally by a complex vector space T and a homomorphism \(\delta:T\to End(Gr^ FH)\) which is (a) horizontal (of degree -1), (b) skew-symmetric \((<\delta(x)\alpha,\beta>+<\alpha,\delta(x)\beta>=0),\) and commutative \((\delta(x_ 1)\delta(x_ 2)=\delta(x_ 2)\delta(x_ 1)).\) Unlike the set of bare Hodge structures, the set of infinitesimal variations is not homogeneous under the action of \(G_ R:\) nontrivial invariants exist.
Section I introduces five invariants, the first of which is \(\delta^ n:Sym^ nT\to Hom^{(s)}(H^{n,0},H^{0,n}).\) The remaining sections explore the geometric content of \(\delta^ n\). An immediate object of interest is the space of infinitesimal Schottky relations, by definition the kernel \({\mathcal Q}\) of \(\delta^ n\). When \(\delta\) comes from the moduli of curves, \({\mathcal Q}\) is the space of quadrics through the canonical curve. In general we are able to interpret geometrically only a subspace of \({\mathcal Q}\), the Gauss linear system, which generalizes the Jacobian system for hypersurfaces. The invariant \(\delta^ n\) is also used to prove a Torelli theorem for cubic hypersurfaces of dimension 3n. Ron Donagi [Compos. Math. (to appear)] has vastly generalized this theorem in recent work using the new technique of symmetrizers.

MSC:

14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14F20 Étale and other Grothendieck topologies and (co)homologies
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
14D20 Algebraic moduli problems, moduli of vector bundles
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] R. Accola : On Castelnuovo’s inequality for algebraic curves I . Trans. AMS. 251 (1979) 357-373. · Zbl 0417.14021
[2] E. Arbarello , M. Cornalba , P. Griffiths and J. Harris : Topics in the Theory of Algebraic Curves , Princeton Univ. Press, (to appear). · Zbl 0559.14017
[3] L. Bers : Finite dimensional Teichmüller spaces and generalizations . Bull. AMS. 5 (1981) 131-172. · Zbl 0485.30002
[4] J. Carlson and P. Griffiths : Infinitesimal variations of Hodge structure and the global Torelli problem . Journees de geometrie algebrique d’Angers, Sijthoff and Noordhoff (1980) 51-76. · Zbl 0479.14007
[5] F. Catanese : The moduli and global period mapping of surfaces with K2 = pg = 1 . Comp. Nath. 41 (1980) 401-414. · Zbl 0444.14008
[6] E. Cattani and A. Kaplan : The monodromy weight filtration for a several variables degeneration of Hodge structures of weight two Invent. Math. 52 (1979) 131-142. · Zbl 0408.32005
[7] K. Chakiris : Counter examples to global Torelli for certain simply connected surfaces . Bull. AMS. 2 (1980) 297-299. · Zbl 0432.32014
[8] H. Clemens : Degenerations of Kahler manifolds . Duke Math. J. 44 (1977) 215-290. · Zbl 0353.14005
[9] M. Cornalba and P. Griffiths : Some transcendental aspects of algebraic geometry . Proceedings of symposia in Pure Mathematics Volume 29 (1975), A.M.S. · Zbl 0309.14007
[10] P. Deligne : Théorie de Hodge I, II, III , Actes de Congrès international des Mathematiciens (Nice, 1970), Gauthier-Villars, 1971, 1, pp. 425-430; Publ. Math. I.H.E.S. 40 (1971) 5-58; Publ. Math. I.H.E.S. 44 (1974) 5-78.
[11] P. Deligne and D. Mumford : The irreducibility of the space of curves of given genus . Publ. Math. I.H.E.S. 36 (1969) 75-110. · Zbl 0181.48803
[12] F. Elzein and S. Zucker : Extendability of the Abel-Jacobi map . To appear.
[13] R. Friedman : Hodge theory, degenerations, and the global Torelli problem . Thesis, Harvard University, 1981.
[14] R. Friedman and R. Smith : The generic Torelli theorem for the Prym map . Invent. Math. 67 (1982) 473-490. · Zbl 0506.14042
[15] T. Fujita : On Kähler fiber spaces over curves . J. Math. Soc. Japan 30 (1978) 779-794. · Zbl 0393.14006
[16] P. Griffiths : Periods of integrals on algebraic manifolds . Bull. Amer. Math. Soc. 75 (1970) 228-296. · Zbl 0214.19802
[17] P. Griffiths and W. Schmid : Recent developments in Hodge theory: a discussion of techniques and results . In: Discrete Subgroups of Lie Groups and Applications to Moduli , Oxford 1975. · Zbl 0355.14003
[18] P. Griffiths and W. Schmid : Locally homogeneous complex manifolds . Acta Math. 123 (1970) 253-302. · Zbl 0209.25701
[19] P. Griffiths : Periods of integrals on algebraic manifolds I and II . Amer. J. Math. 90 (1968) 568-626 and 805-865. · Zbl 0183.25501
[20] P. Griffiths and J. Harris : Principles of Algebraic Geometry , John Wiley, 1978. · Zbl 0408.14001
[21] P. Griffiths : Periods of integrals on algebraic manifolds III . Publ. Math. I.H.E.S. 38 (1970) 125-180. · Zbl 0212.53503
[22] P. Griffiths : Periods of certain rational integrals . Ann. Math. 90 (1969) 460-541. · Zbl 0215.08103
[23] P. Griffiths : A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles . Amer. J. Math. 101 (1979) 94-131. · Zbl 0453.14001
[24] P. Griffiths : On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry . Duke Math. J. 41 (1974) 775-814. · Zbl 0294.53034
[25] P. Griffiths : and J. Harris : Residues and zero-cycles on an algebraic variety . Ann. Math. 108 (1978) 461-505. · Zbl 0423.14001
[26] A. Grothendieck : On the deRham cohomology of algebraic varieties . Publ. Math. I.H.E.S. 29 (1966) 95-103. · Zbl 0145.17602
[27] W.V.D. Hodge : The Theory and Applications of Harmonic Integrals , Cambridge University Press, 1941. · Zbl 0048.15702
[28] Y. Kawamata : Characterization of abelian varieties . Comp. Math. 43 (1981) 253-276. · Zbl 0471.14022
[29] K. Kodaira and D. Spencer : On deformations of complex analytic structures, I and II . Ann. Math. 67 (1958) 328-466. · Zbl 0128.16901
[30] K. Kodaira : A theorem of completeness of characteristic systems for analytic families of compact subvarities of complex manifolds . Ann. Math. 75 (1962) 146-162. · Zbl 0112.38404
[31] M. Kuranishi : New proof for the existence of locally complete families of algebraic structures . In: Proceedings of the Conference on Complex Analysis, Minneapolis 1964, NY, Springer-Verlag, 1965. · Zbl 0144.21102
[32] S. Lefschetz : L’Analysis Situs et la Geometrie Algebrique , Paris, Gauthier-Villars, 1924. · JFM 50.0663.01
[33] D. Lieberman : Higher Picard varieties . Amer. J. Math. 90 (1968) 1165-1199. · Zbl 0183.25401
[34] D. Lieberman : On the module of intermediate Jacobians . Amer. J. Math. 91 (1969) 671-682. · Zbl 0187.18701
[35] Y. Manin : Correspondence, motifs and monoidal transformations . Math. USSR- Sbornik 6 (1968) 439-470. · Zbl 0199.24803
[36] B. Moishezon : Algebraic homology classes on algebraic varieties . Izv. Akad. Nauk. 31 (1967) 225-268. · Zbl 0162.52503
[37] D. Mumford : Geometric Invariant Theory , Springer-Verlag 1966. · Zbl 0147.39304
[38] F. Oort and J. Steenbrink : On the local Torelli problem for algebraic curves. In: Journeés de geometrie algébrique d’Angers , Rockville Sijthoff & Noordhoff (1980). · Zbl 0444.14007
[39] C. Peters and J. Steenbrink : Infinitesimal variation of Hodge structure . Notes from Leyden University, 1980. · Zbl 0523.14009
[40] A. Piateski-Shapiro and I. Safarevich : A Torelli theorem for algebraic surfaces of type K-3 . Izv. Akad. Nauk. 35 (1971) 530-572. · Zbl 0219.14021
[41] E. Picard and G. Simart : Theorie des fanctions algébriques de deux variables independantes , Paris, Gauthier-Villars 1897 and 1906; and Bronx, NY, Chelsea 1971. · JFM 28.0327.01
[42] B. Saint-Donat : On Petri’s analysis of the linear system of quadrics through a canonical curve . Math. Ann. 206 (1973) 157-175. · Zbl 0315.14010
[43] J. Scherk : On the monodromy theorem for isolated hypersurface singularities . Invent. Math. 58 (1980) 289-301. · Zbl 0432.32010
[44] W. Schmid : Variations of Hodge structures: the singularities of the period mapping . Invent. Math. 22 (1973) 211-319. · Zbl 0278.14003
[45] J.-P. Serre : Faisceaux algébriques cohérents . Ann. Math. 61 (1955) 197-278. · Zbl 0067.16201
[46] J. Steenbrink : Limits of Hodge structures . Invent. Math. 31 (1976) 229-257. · Zbl 0303.14002
[47] A. Todorov : Surfaces of general type with pg = 1 and (K.K) = 1 (I) . Ann. Ec. Norm. Sup. 13 (1980) 1- 21. · Zbl 0478.14030
[48] L. Tu : Variation of Hodge structure and the local Torelli problem . Thesis, Harvard University, 1979.
[49] A. Weil : On Picard varieties . Amer. J. Math. 74 (1952) 865-894. · Zbl 0048.38302
[50] S. Zucker : Generalized and Intermediate Jacobians and the theorem on normal functions . Invent. Math. 33 (1976) 185-222. · Zbl 0329.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.