zbMATH — the first resource for mathematics

On hyperchaos synchronization of a hyperchaotic Lü system. (English) Zbl 1360.34118
Summary: This work presents hyperchaos synchronization of two identical hyperchaotic Lü systems. In this study three methods are applied to achieve hyperchaos synchronization. The sufficient conditions for achieving synchronization of two identical hyperchaotic Lü systems are derived by using Lyapunov stability theory. Numerical simulations are presented to demonstrate the effectiveness of the proposed hyperchaos synchronization schemes.

34D06 Synchronization of solutions to ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI
[1] Cafagna, D.; Grassi, G., New 3D-scroll attractors in hyperchaotic chua’s circuits forming a ring, Int. J. bifur. chaos, 13, 10, 2889-2903, (2003) · Zbl 1057.37026
[2] Udaltsov, V.S.; Goedgebuer, J.P.; Larger, L.; Cuenot, J.B.; Levy, P.; Rhodes, W.T., Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information, Opt. spectrosc., 95, 1, 114-118, (2003)
[3] E.M. Shahverdiev, R.A. Nuriev, R.H. Hashimov, K.A. Shore, Adaptive time-delay hyperchaos synchronization in laser diodes subject to optical feedback(s), arXiv:nlin.CD/0404053 v1 29, April 2004
[4] Hsieh, J.Y.; Hwang, C.C.; Wang, A.P.; Li, W.J., Controlling hyperchaos of the Rössler system, Internat. J. control, 72, 10, 882-886, (1999) · Zbl 0989.93069
[5] Rossler, O.E., An equation for hyperchaos, Phys. lett. A, 71, 1557, (1979) · Zbl 0996.37502
[6] Thamilmaran, K.; Lakshmanan, M.; Venkatesan, A., Hyperchaos in a modified canonical chua’s circuit, Int. J. bifur. chaos, 14, 1, 221-243, (2004) · Zbl 1067.94597
[7] Yan, Z., Controlling hyperchaos in the new hyperchaotic Chen system, Appl. math. comput., 168, 1239-1250, (2005) · Zbl 1160.93384
[8] Carroll, T.L.; Pecora, L.M., Synchronizing chaotic circuits, IEEE trans. circuits syst. I, 38, 4, 453-456, (1991)
[9] Wang, W.; Guan, Z.; Wang, H., Feedback and adaptive control for the synchronization of Chen system via a single variable, Phys. lett. A, 312, 40-43, (2003) · Zbl 1024.37053
[10] Liao, T.-L.; Lin, S.-H., Adaptive control and synchronization of Lorenz systems, J. franklin inst., 336, 925-937, (1999) · Zbl 1051.93514
[11] Yassen, M.T., Adaptive control and synchronization of a modified chua’s circuit system, Appl. math. comput., 135, 113-128, (2003) · Zbl 1038.34041
[12] Yassen, M.T., Adaptive synchronization of two different uncertain chaotic systems, Phys. lett. A, 337, 335-341, (2005) · Zbl 1136.34314
[13] Agiza, H.N., Chaos synchronization of Lü dynamical system, Nonlinear anal., 58, 11-20, (2004) · Zbl 1057.34042
[14] Gao, T.; Chen, Z.; Yuan, Z.; Yu, D., Adaptive synchronization of a new hyperchaotic system with uncertain parameters, Chaos solitons fractals, 33, 922-928, (2007)
[15] Feng, J.; Chen, S.; Wang, C., Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification, Chaos solitons fractals, 26, 1163-1169, (2005) · Zbl 1122.93401
[16] Park, J.H., Adaptive synchronization of hyperchaotic Chen system with uncertain parameters, Chaos solitons fractals, 26, 959-964, (2005) · Zbl 1093.93537
[17] Tao, C.; Liu, X., Feedback and adaptive control and synchronization of a set of chaotic and hyperchaotic systems, Chaos solitons fractals, 32, 14, 1572-1583, (2007) · Zbl 1129.93043
[18] Chen, S.; Hua, J.; Wang, C.; Lü, J., Adaptive synchronization of uncertain Rössler hyperchaotic system based on parameter identification, Phys. lett. A, 321, 50-55, (2004) · Zbl 1118.81326
[19] Chen, A.; Lu, J.; Lü, J.; Yu, S., Generating hyperchaotic Lü attractor via state feedback control, Physica A, 364, 103-110, (2006)
[20] Lakshmanan, M.; Murali, K., Chaos in nonlinear oscillators controlling and synchronization, (1996), World Scientific Singapore · Zbl 0868.58058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.