×

zbMATH — the first resource for mathematics

The trade-off between mutual interference and time lags in predator-prey systems. (English) Zbl 0535.92024
This paper presents a non-linear 2 dimensional model of a predator-prey system. There is a delay \(\tau\) in it, which corresponds to the time required to ”convert prey into predator”. Another feature of the model is the crowding counter-effect (or: mutual interference) in the predation. The paper deals with the local behavior near to the equilibrium corresponding to persistence of both species. Depending on the values of ecologically meaningful parameters, various results are shown:
In some cases (theorem 4.1) there is instability for all delays; in other cases, the delay is proved to act as a de-stabilizer (theorem 4.2). Similar results are obtained for asymptotic stability; formally, there is a Hopf bifurcation. The proofs combine the use of elementary calculus together with a lemma proved by G. J. Butler (which, strangely, does not seem to be ”classical”). Roughly speaking, this lemma says that: \(p(\lambda\),\(\tau)\) being analytic in \(\lambda\), if \(R_{\tau}=\{Re \lambda:p(\lambda,\tau)=0\}\) is \({\mathbb{R}}^*\!_-\) for \(\tau =\tau_ 1\) and has a nonempty intersection with \({\mathbb{R}}^*\!_+\) for \(\tau =\tau_ 2\), then: \(0\in R_{\tau}\) for some \(\tau \in(\tau_ 1,\tau_ 2)\).
Reviewer: O.Arino

MSC:
92D40 Ecology
34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, V. D., D. L. De Angelis and R. A. Goldstein. 1980. ”Stability Analysis of the Time Delay in a Host-Parasitoid Model.”J. theor. Biol. 83, 43–62. · doi:10.1016/0022-5193(80)90371-9
[2] Arditi, R., J.-M. Abillon and J. Vieira da Silva. 1977. ”The Effect of a Time-delay in a Predator-Prey Model.”Math. Biosci. 33, 107–120. · Zbl 0362.92008 · doi:10.1016/0025-5564(77)90066-9
[3] Bellman, R. and K. L. Cooke. 1963.Differential-difference Equations. New York: Academic Press. · Zbl 0105.06402
[4] Bounds, J. M. and J. M. Cushing. 1975. ”On the Behavior of Solutions of Predator-Prey Equations with Hereditary Terms.”Math. Biosci. 26, 41–54. · Zbl 0333.92015 · doi:10.1016/0025-5564(75)90093-0
[5] Brauer, F. 1977. ”Periodic Solutions of Some Ecological Models.”J. theor. Biol. 69, 143–152. · doi:10.1016/0022-5193(77)90392-7
[6] –, 1979. ”Characteristic Return Times for Harvested Population Models with Time Lag.”Math. Biosci. 45, 295–311. · Zbl 0412.92017 · doi:10.1016/0025-5564(79)90064-6
[7] Cooke, K. L. and J. A. Yorke, 1973. ”Some Equations Modelling Growth Processes and Gonorrhea Epidemics.”Math. Biosci. 16, 75–101. · Zbl 0251.92011 · doi:10.1016/0025-5564(73)90046-1
[8] Cushing, J. M. 1976a. ”Forced Asymptotically Periodic Solutions of Predator-Prey Systems with or without Hereditary Effects.”SIAM J. appl. Math.,30, 665–674. · Zbl 0331.93078 · doi:10.1137/0130059
[9] –. 1976b. ”Periodic Solutions of Two Species Interaction Models with Lags.”Math. Biosci. 31, 143–156. · Zbl 0335.92018 · doi:10.1016/0025-5564(76)90046-8
[10] –. 1976c. ”Predator-Prey Interaction with Time Delays.”J. math. Biol. 3, 369–380. · Zbl 0342.92012 · doi:10.1007/BF00275066
[11] Freedman, H. I. 1969. ”The Implicit Function Theorem in the Scalar Case.”Can. math. Bull. 12, 721–732. · Zbl 0189.33801 · doi:10.4153/CMB-1969-093-5
[12] –. 1979. ”Stability Analysis of a Predator-Prey System with Mutual Interference and Density-dependent Death Rates.”Bull. math. Biol. 41, 67–78. · Zbl 0387.92016 · doi:10.1007/BF02547925
[13] –. 1980.Deterministic Mathematical Models in Population Ecology. New York: Marcel Dekker. · Zbl 0448.92023
[14] Hale, J. 1977.Theory of Functional Differential Equations. New York: Springer Verlag. · Zbl 0352.34001
[15] Hassell, M. P. 1971. ”Mutual Interference between Searching Insect Parasites.”J. Anim. Ecol. 40, 473–486. · doi:10.2307/3256
[16] Levin, S. A. 1977. ”A More Functional Response to Predator-Prey Stability.”Am. Nat. 111, 381–383. · doi:10.1086/283170
[17] – and R. M. May. 1976. ”A Note on Difference-delay Equations.”Theor. pop. Biol. 9, 178–187. · Zbl 0338.92021 · doi:10.1016/0040-5809(76)90043-5
[18] May, R. M. 1973. ”Time-delay versus Stability in Population Models with Two and Three Trophic Levels.”Ecology 54, 315–325. · doi:10.2307/1934339
[19] Reddingius, J. 1963. ”A Mathematical Note on a Model of a Consumer-Food Relation in which the Food is Continually Replaced.”Acta biotheor. 16, 183–198. · doi:10.1007/BF01556604
[20] Rogers, D. J. and M. P. Hassell. 1974. ”General Models for Insect Parasite and Predator Searching Behaviour: Interference.”J. Anim. Ecol. 43, 239–253. · doi:10.2307/3170
[21] Rosenzweig, M. L. and R. H. MacArthur. 1963. ”Graphical Representation and Stability Conditions of Predator-Prey Interactions.”Am. Nat. 47, 209–223. · doi:10.1086/282272
[22] Smith, R. H. and R. Mead. 1974. ”Age Structure and Stability in Models of Prey-Predator Systems.”Theor. pop. Biol. 6, 308–322. · doi:10.1016/0040-5809(74)90014-8
[23] Taylor, C. E. and R. R. Sokal. 1976. ”Oscillations in Housefly Population Sizes due to Time Lags.”Ecology 57, 1060–1067. · doi:10.2307/1941071
[24] Thingstad, T. F. and T. I. Langeland. 1974. ”Dynamics of Chemostat Culture: the Effect of a Delay in Cell Response.”J. theor. Biol. 48, 149–159. · doi:10.1016/0022-5193(74)90186-6
[25] Veilleux, B. G. 1979. ”An Analysis of the Predatory Interaction betweenParamecium andDidinium.”J. Anim. Ecol. 48, 787–803. · doi:10.2307/4195
[26] Wangersky, P. J. and W. J. Cunningham. 1957. ”Time Lag in Population Models.”Cold Spring Harb. Symp. qual. Biol. 22, 329–338. · doi:10.1101/SQB.1957.022.01.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.