×

zbMATH — the first resource for mathematics

The structure of images. (English) Zbl 0537.92011
In this paper it is shown that any image can be embedded in a one- parameter family of derived images (with resolution as the parameter) in essentially only one unique way if the constraint that no spurious detail should be generated when the resolution is diminished, is applied. The structure of this family is governed by the well known diffusion equation. As such the structure fits into existing theories that treat the front end of the visual system as a continuous stack of homogeneous layers, characterized by iterated local processing schemes.

MSC:
92Cxx Physiological, cellular and medical topics
91E30 Psychophysics and psychophysiology; perception
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Burt, P.J., Hong, Tsai-Hong, Rosenfeld, A.: Segmentation and estimation of image region properties through cooperative hierarchical computation. IEEE Trans. SMC-11, 802–825 (1981)
[2] Cayley, A.: On contour and slope lines. The London, Edinburgh, and Dublin Philosophical Magazine and J. of Science 18 (120), 264–268 (Oct. 1859)
[3] Maxwell, J.C.: On hills and dales. The London, Edinburgh, and Dublin Philosophical Magazine and J. of Science 4th Series 40 (269), 421–425 (Dec. 1870)
[4] Ehrich, R.W., Foith, J.P.: Representation of random waveforms by relational trees. IEEE Trans. Comput. 25, 725–736 (1976) · Zbl 0334.68057 · doi:10.1109/TC.1976.1674681
[5] Guillemin, V., Pollack, A.: Differential topology. Englewood Cliffs, NJ: Prentice-Hall 1974 · Zbl 0361.57001
[6] Hay, G.A., Chesters, M.S.: A model of visual threshold detection. J. Theor. Biol. 67, 221–240 (1977) · doi:10.1016/0022-5193(77)90196-5
[7] Koenderink, J.J., Doorn, A.J. van: The structure of two-dimensional scalar fields with applications to vision. Biol. Cybern. 33, 151–158 (1979) · Zbl 0406.92006 · doi:10.1007/BF00337293
[8] Koenderink, J.J., Doorn, A.J. van: Visual detection of spatial contrast: influence of location in the visual field, target extent and illuminance level. Biol. Cybern. 30, 157–167 (1978) · doi:10.1007/BF00337144
[9] Koenderink, J.J., Doorn, A.J. van: Invariant features of contrast detection: an explanation in terms of self-similar detector arrays. J. Opt. Soc. Am. 72, 83–87 (1982) · doi:10.1364/JOSA.72.000083
[10] Marko, H.: Die Systemtheorie homogener Schichten. Kybernetik 5, 221 (1969) · Zbl 0181.16201 · doi:10.1007/BF00274977
[11] Marr, D., Poggio, T., Ullman, S.: Bandpass channels, zero-crossings, and early visual information processing. J. Opt. Soc. Am. 69, 914–916 (1977) · doi:10.1364/JOSA.69.000914
[12] Marr, D., Hildreth, E.: Theory of edge detection. Proc. Royal Soc. Lond. B 207, 187–217 (1980) · doi:10.1098/rspb.1980.0020
[13] Roehler, R.: Ein Modell zur örtlich-zeitlichen Signalübertragung im visuellen System des Menschen auf der Basis der linearen Systemtheorie kontinuierlichen Medien. Biol. Cybern. 27, 97–105 (1976) · Zbl 0325.92004 · doi:10.1007/BF00320134
[14] Spivak, M.: A comprehensive introduction to differential geometry, Vol. III. Berkeley, CA: Publish or Perish Inc. 1975 · Zbl 0306.53001
[15] Thom, R.: Stabilité structurelle et morphogenésè. Reading, MA: Benjamin 1972
[16] Witkin, A.P.: Scale-space filtering. Proc. of IJCAI, 1019-1021, Karlsruhe 1983
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.