zbMATH — the first resource for mathematics

Generalized crossed products applied to maximal orders, Brauer groups and related exact sequences. (English) Zbl 0538.16003
The results in this paper circle around the following main idea: if A is a certain maximal order over a commutative ring C and A contains a commutative extension S of C such that G acts as a group of C- automorphisms of S such that \(S^ G\) (the fixed ring of G) equals C, then A is a generalized crossed product over S with respect to G, i.e. \(A=\oplus_{\sigma \in G}S_{\sigma},\quad S_ e=S\quad and\quad S_{\sigma}S_{\tau}=S_{\sigma \tau}\) for all \(\sigma,\tau \in G.\) The authors actually consider the following situations: A is a maximal Krull order over a Dedekind domain; A is a relative Azuyama algebra, or in particular a reflexive Azumaya algebra in the sense of Yuan; A is a common Azumaya algebra. Certain extra conditions have to be imposed on S and these have the effect that S becomes a ”relative” or a ”weak” Galois extension of C.
Reviewer: C.Năstăsescu

16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
16W20 Automorphisms and endomorphisms
PDF BibTeX Cite
Full Text: DOI
[1] Auslander, M.; Goldman, O., The Brauer group of a commutative ring, Trans. amer. math. soc., 97, 367-409, (1960) · Zbl 0100.26304
[2] S. Caenepeel, Cohomological interpretation of the graded Brauer group, Preprint V.U.B. · Zbl 0576.13001
[3] Caenepeel, S.; Van Oystaeyen, F., Crossed products over graded local rings, () · Zbl 0482.13004
[4] Chase, S.; Harrison, P.; Rosenberg, A., Galois theory and cohomology of commutative rings, Mem. amer. math. soc., 52, 1-19, (1965) · Zbl 1415.13001
[5] Chase, S.; Rosenberg, A., Amitsur cohomology and the Brauer group, Mem. amer. math. soc., 52, (1965) · Zbl 0143.06001
[6] Dade, E., Compounding Clifford’s theory, Ann. of math., 91, 2, 236-270, (1970) · Zbl 0224.20037
[7] Dade, E., Group graded rings and modules, Ann. of math., 174, 2, 241-262, (1980) · Zbl 0424.16001
[8] De Meyer, F.; Ingraham, E., Separable algebras over commutative rings, () · Zbl 0215.36602
[9] Fossum, R., The divisor class group of a Krull domain, () · Zbl 0256.13001
[10] Frölich, A., The Picard group of noncommutative rings, in particular of orders, Trans. amer. math. soc., 180, 1-45, (1973) · Zbl 0278.16016
[11] Golan, J., Localization in noncommutative rings, () · Zbl 0302.16002
[12] Goldman, O., Rings and modules of quotients, J. algebra, 13, 10-47, (1969) · Zbl 0201.04002
[13] Kanzaki, T., On generalized crossed product and Brauer group, Osaka J. math., 5, 175-188, (1968) · Zbl 0202.04202
[14] Knus, M.A.; Ojanguren, M., Théorie de la descente et d’algèbres d’Azumaya, () · Zbl 0284.13002
[15] L. Le Bruyn, On the Jespers-Van Oystaeyen Conjecture, Preprint UIA, to appear in J. Algebra. · Zbl 0536.16008
[16] L. Le Bruyn and F. Van Oystaeyen, Generalized Rees rings and relative maximal orders satisfying polynomial identities, J. Algebra, to appear. · Zbl 0521.16003
[17] C. Nǎstǎcescu and F. Van Oystaeyen, on strongly graded rings and crossed products, Comm. in Algebra.
[18] Nǎstǎcescu, C.; Van Oystaeyen, F., Graded ring theory, () · Zbl 0494.16001
[19] Orzech, M., Brauer groups and class groups for a Krull domain, () · Zbl 0492.13003
[20] Reiner, I., Maximal orders, (1975), Academic Press New York · Zbl 0305.16001
[21] Rim, D.S., An exact sequence in Galois cohomology, Proc. amer. math. soc., 837-840, (1965) · Zbl 0166.30604
[22] Van Oystaeyen, F., On graded rings and modules of quotients, Comm. in algebra, 6, 1923-1959, (1978) · Zbl 0388.16001
[23] Van Oystaeyen, F., Graded Azumaya algebras and Brauer groups, (), 158-172 · Zbl 0462.13005
[24] Van Oystaeyen, F., On Brauer groups of arithmetically graded rings, Comm. in algebra, 19, 9, 1873-1942, (1981) · Zbl 0468.16007
[25] Van Oystaeyen, F., Generalized Rees rings, J. algebra, 82, 1, 185-193, (1983) · Zbl 0509.13016
[26] Van Oystaeyen, F., On Clifford systems and generalized crossed products, J. algebra, 87, 2, 396-415, (1984) · Zbl 0542.16001
[27] Van Oystaeyen, F.; Verschoren, A., Relative invariants of rings: the commutative theory, () · Zbl 0568.13001
[28] Van Oystaeyen, F.; Verschoren, A., Relative Azumaya algebras and crossed products, Comm. in algebra, 12, 6, 745-775, (1984)
[29] Yuan, S., Reflexive modules and algebra class groups over noetherien integrally closed domains, J. algebra, 32, 405-417, (1974) · Zbl 0297.13010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.