Stable standing waves of nonlinear Klein-Gordon equations. (English) Zbl 0539.35067

Summary: In this paper we give sufficient conditions for the stability of the standing waves of least energy for nonlinear Klein-Gordon equations.


35Q99 Partial differential equations of mathematical physics and other areas of application
35B40 Asymptotic behavior of solutions to PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
Full Text: DOI


[1] Anderson, D.L.T.: J. Math. Phys.12, 945-952 (1971)
[2] Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon, non linéaires. C. R. Acad. Sci.293A, 489-492 (1981) · Zbl 0492.35010
[3] Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys.85, 549-561 (1982) · Zbl 0513.35007
[4] Lee, T.D.: Particle physics and introduction to field theory. New York: Harwood Academic Publishers 1981
[5] Lions, P.L.: Principle de concentration ? compacite en calcul des variations. C. R. Acad. Sci. Paris294, 261-264 (1982) · Zbl 0485.49005
[6] Shatah, J.M.: Unstable ground state and standing waves of nonlinear Klein-Gordon equations (to appear) · Zbl 0617.35072
[7] Strauss, W.A.: Nonlinear invariant wave equations. In: Lecture Notes in Physics, Vol. 23, pp. 197-249 (Erice 1977). Berlin, Heidelberg, New York: Springer 1978
[8] Strauss, W.A.: Anais. Acad. Bras. Cienc.42, 645-651 (1970)
[9] Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149 (1977) · Zbl 0356.35028
[10] Berestycki, H., Lions, P.: Arch. Rat. Mech. Anal. (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.