×

zbMATH — the first resource for mathematics

Maximal orders in Artinian rings. (English) Zbl 0541.16013
The two principal results of this paper concern a Noetherian ring R which is a maximal order in its Artinian quotient ring. The first states that R is a direct sum of prime rings and a ring S which contains no reflexive ideals other than S itself. Examples are given to show that S may be neither prime nor Artinian. The second result states: If T is a proper reflexive ideal of R then R/T has a quotient ring which is an Artinian principal ideal ring. This extends a result for prime rings R of M. Chamarie [J. Algebra 72, 210-222 (1981; Zbl 0468.16008)].
Reviewer: K.A.Brown

MSC:
16P40 Noetherian rings and modules (associative rings and algebras)
16P50 Localization and associative Noetherian rings
16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.)
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16Dxx Modules, bimodules and ideals in associative algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brown, K.A.; Hajarnavis, C.R.; MacEacharn, A.B., Noetherian rings of finite global dimension, (), 349-371, (3) · Zbl 0485.16008
[2] Chamarie, M., Localisation dans des ordres maximaux, Comm. algebra, 2, 279-293, (1974) · Zbl 0289.16006
[3] Chamarie, M., Anneaux de Krull non commutatifs, J. algebra, 72, 210-222, (1981) · Zbl 0468.16008
[4] Chatters, A.W.; Hajarnavis, C.R., Rings with chain conditions, () · Zbl 0446.16001
[5] Cozzens, J.H.; Sandomierski, F.L., Maximal orders and localization, I, J. algebra, 44, 319-338, (1977) · Zbl 0347.16003
[6] Eisenbud, D.; Robson, J.C., Modules over Dedekind prime rings, J. algebra, 16, 67-85, (1970) · Zbl 0211.05603
[7] Ginn, S.M.; Moss, P.B., A decomposition theorem for Noetherian orders in Artin rings, Bull. London math. soc., 9, 177-181, (1977) · Zbl 0355.16013
[8] Goldie, A.; Michler, G., Ore extensions and polycyclic group rings, J. London math. soc., 9, 337-345, (1974), (2) · Zbl 0294.16019
[9] Hajarnavis, C.R.; Lenagan, T.H., Localisation in asano orders, J. algebra, 21, 441-449, (1972) · Zbl 0241.16003
[10] Hajarnavis, C.R.; Robson, J.C., Decomposition of maximal orders, Bull. London math. soc., 15, 123-125, (1983) · Zbl 0491.16012
[11] \scT. Larkin, Thesis, University of Warwick, to appear.
[12] Michler, G.O., Charakterisierung einer klasse von noetherschen ringen, Math. Z., 100, 163-182, (1967) · Zbl 0154.27706
[13] Maury, G.; Raynaud, J., Ordre maximaux aux sens de K. asano, () · Zbl 0432.16003
[14] Robson, J.C., Artinian quotient rings, (), 600-616, (3) · Zbl 0154.28803
[15] Small, L.W., Orders in Artinian rings, J. algebra, 4, 13-41, (1966) · Zbl 0147.28703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.