Counterexamples to a conjecture of Grothendieck. (English) Zbl 0542.46038

The paper decides to the negative the following conjecture of A. Grothendieck [Produits tensoriels topologiques et espaces nucléaires, Mém. Am. Math. Soc. 16 (1955; Zbl 0064.355)]: If two Banach spaces are such that their injective and projective products coincide, then one of the two Banach spaces must be finite dimensional.
The paper contains the construction of a separable infinite dimensional Banach space X such that the injective and the projective tensor product of this space with itself coincide, both algebraically and topologically. This space is of cotype 2 as well as its dual. It can contain uniformly complemented \(\ell^ n_{p'}s\) for no p such that 1\(\leq p\leq \infty\), thus answering also to the negative a question of J. Lindenstrauss [Actes Congr. Internat. Math., Nice 1970, Vol.2, 365-372 (1971; Zbl 0224.46032)]. Since X is not isomorphic to a Hilbert space, although X and \(X^*\) are both of cotype 2, a problem of B. Maurey stated in Proc. Int. Congr. Math., Vancouver 1974, Vol. 2, 75-79 (1975; Zbl 0343.47012) is also solved to the negative.
Reviewer: W.Strauss


46M05 Tensor products in functional analysis
46B20 Geometry and structure of normed linear spaces
Full Text: DOI


[1] Bourgain, J., New Banach space properties of the disc algebra andH To appear inActa Math.
[2] Davis, W. &Johnson, W., Compact, non nuclear operators.Studia Math., 51 (1974), 81–85. · Zbl 0286.47015
[3] Diestel, J. & Uhl, J. J.,Vector measures. Math. Surveys no. 15. Amer. Math. Soc. 1977.
[4] Dubinsky, E., Pełczyński, A. &Rosenthal, H. P., On Banach spacesX for which {\(\Pi\)}2(X)=B(X).Studia Math., 44 (1972), 617–648. · Zbl 0262.46018
[5] Enflo, P., A counterexample to the approximation problem in Banach spaces.Acta Math., 130 (1973), 309–317. · Zbl 0267.46012
[6] Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques.Bol. Soc. Matem. Sao-Paulo, 8 (1956), 1–79.
[7] Grothendieck, A.,Produits tensoriels topologiques et espaces nucléaires. Memoirs of the A.M.S. no. 16 (1955).
[8] Hoffmann-Jørgensen, J.,Sums of independent Banach space valued random variables. Aarhus University. Preprint series 72-73, no. 15.
[9] Johnson, W. B., On finite dimensional subspaces of Banach spaces with local unconditional structure.Studia Math., 51 (1974), 225–240. · Zbl 0301.46012
[10] Kisliakov, S. V., On spaces with ”small” annihilators.Zap. Naucn. Sem. Leningrad. Otdel. Math. Institute Steklov (LOMI), 65 (1976), 192–195 (russian). · Zbl 0347.46012
[11] –, What is needed for aO-absolutely summing to be nuclear? Complex Analysis and Spectral Theory,Seminar, Leningrad 1979–80, Springer Lecture Notes 864 (1981), p. 336.
[12] Kwapień, S., On operators factorizable throughL p spaces.Bull. Soc. Math. France, Mémoire 31–32 (1972), 215–225.
[13] Lindenstrauss, J., The geometric theory of the classical Banach spaces inActes Congr. Internat. Math. Nice 1970,Vol. 2, p. 365–372.
[14] Lindenstrauss, J. &Pełczyński, A., Absolutely summing operators in p spaces and their applications.Studia Math., 29 (1968), 275–326. · Zbl 0183.40501
[15] Lindenstrauss, J. &Tzafriri, L.,Classical Banach spaces, Vol. I and II. Springer Verlag. Berlin, Heidelberg, New York 1977 and 1979. · Zbl 0362.46013
[16] Maurey, B., Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espaceL p .Astérisque 11 (1974).
[17] Kisliakov, S. V., Quelques problèmes de factorisation d’opérateurs linéaires, inActes. Congrès Intern. Math. Vancouver, 1974,Vol. 2, p. 75.
[18] Maurey, B. &Pisier, G., Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach.Studia Math., 58 (1976), 45–90. · Zbl 0344.47014
[19] Mooney, M. C., A theorem on bounded analytic functions,Pacific J. Math., 18 (1967), 827–831. · Zbl 0188.45001
[20] Pełczyński, A., Banach spaces of analytic functions and absolutely summing operators.C.B.M.S. Regional Conferences in Math. Vol. 30. Amer. Math. Soc. 1977. · Zbl 0384.46015
[21] Pietsch, A.,Operator ideals. VEB, Berlin 1978 and North-Holland 1979.
[22] Pisier, G., Une nouvelle classe d’espaces vérifiant le théorème de Grothendieck.Ann. Inst. Fourier, 28 (1978), 69–80. · Zbl 0363.46019
[23] –, Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert.Ann. Sci. École Norm. Sup., 13 (1980), 23–43. · Zbl 0436.47013
[24] –, Quotients of Banach spaces of cotypeq.Proc. Amer. Math. Soc., 85 (1982), 32–36. · Zbl 0487.46006
[25] Pisier, G., On the duality between type and cotype.Proceedings of a conference on Martingale theory, Cleveland 1981.Springer Lecture Notes 939. · Zbl 0487.46007
[26] Rosenthal, H. P., Pointwise compact subsets of the first Baire class.Amer. J. Math., 99 (1977), 362–378. · Zbl 0392.54009
[27] Séminaire Maurey-Schwartz 1973–74, Ecole Polytechnique, Paris. EspacesL p , applications radonifiantes et géométrie des espaces de Banach.
[28] Séminaire d’analyse fonctionnelle 1978–79. Ecole Polytechnique, Palaiseau.
[29] Zygmund, A.,Trigonometric series Iand II, second edition. Cambridge University Press (1968).
[30] Bourgain, J. & Pisier, G., A construction of spaces and related Banach spaces. To appear. · Zbl 0586.46011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.