×

Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. (English) Zbl 0545.76131

See the preview in Zbl 0535.76116.

MSC:

76T99 Multiphase and multicomponent flows
76S05 Flows in porous media; filtration; seepage
76M99 Basic methods in fluid mechanics

Citations:

Zbl 0535.76116
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bramble, J.H., A second-order finite difference analog of the first biharmonic boundary value problem, Numer. math., 4, 236-249, (1966) · Zbl 0154.41105
[2] Bramble, J.H.; Schatz, A.H., Estimates for spline projections, RAIRO anal. numér., 10, 5-37, (1976) · Zbl 0343.65045
[3] Bramble, J.H.; Schatz, A.H., Higher order local accuracy by averaging in the finite element method, Math. comp., 31, 94-111, (1977) · Zbl 0353.65064
[4] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO anal. numér., 2, 129-151, (1974) · Zbl 0338.90047
[5] Douglas, J., Simulation of miscible displacement in porous media by a modified method of characteristic procedure, (), Dundee 1981
[6] Douglas, J., Finite difference methods for two-phase incompressible flow in porous media, SIAM J. numer. anal., 20, 681-696, (1983) · Zbl 0519.76107
[7] Douglas, J., Superconvergence in the pressure in the simulation of miscible displacement, () · Zbl 0624.65124
[8] Douglas, J.; Ewing, R.E.; Wheeler, M.F., Approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO anal. numér., 17, 17-33, (1983) · Zbl 0516.76094
[9] Douglas, J.; Ewing, R.E.; Wheeler, M.F., A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, RAIRO anal. numér., 17, 249-265, (1983) · Zbl 0526.76094
[10] Douglas, J.; Russell, T.F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. numer. anal., 19, 871-885, (1982) · Zbl 0492.65051
[11] Dupont, T.; Fairweather, G.; Johnson, J.P., Three-level Galerkin methods for parabolic equations, SIAM J. numer. anal., 11, 392-410, (1974) · Zbl 0313.65107
[12] Ewing, R.E.; Russell, T.F., Efficient time-stepping methods for miscible displacement problems in porous media, SIAM J. numer. anal., 19, 1-67, (1982) · Zbl 0498.76084
[13] Ewing, R.E.; Russell, T.F.; Wheeler, M.F., Simulation of miscible displacement using mixed methods and a modified method of characteristics, (), 71-81
[14] Ewing, R.E.; Wheeler, M.F., Galerkin methods for miscible displacement problems with point sources and sinks—unit mobility ratio case, (), 151-174
[15] Pironneau, O., On the transport-diffusion algorithm and its application to the Navier-Stokes equations, Numer. math., 38, 309-332, (1982) · Zbl 0505.76100
[16] Raviart, P.A.; Thomas, J.M., A mixed finite element method for second order elliptic problems, (), Rome 1975 · Zbl 0362.65089
[17] Russell, T.F., An incompletely iterated characteristic finite element method for a miscible displacement problem, ()
[18] SIAM J. Numer. Anal., submitted.
[19] Russell, T.F.; Wheeler, M.F., Finite element and finite difference methods for continuous flows in porous media, (), Ch. 2. · Zbl 0572.76089
[20] Wheeler, M.F., A priori L_{2} error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. numer. anal., 10, 723-759, (1973) · Zbl 0232.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.