×

Stability theory for solitary-wave solutions of scalar field equations. (English) Zbl 0546.35062

The authors study the stability of special travelling-wave (solitary- wave) solutions of classical scalar field equations of the form (1) \(\square\phi +u'(\phi)=0\). They prove a stability result for a certain class of solutions of (1) under some assumptions on u. Furthermore they give a general instability result for fixed points of some nonlinear maps in a Banach space. Some applications of both theorems are discussed.
Reviewer: N.Jacob

MSC:

35Q99 Partial differential equations of mathematical physics and other areas of application
35B35 Stability in context of PDEs
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lax, P. D.: Comm. Pure Appl. Math.21, 467 (1968) · Zbl 0162.41103
[2] Coleman, S.: Classical lumps and their quantum descendants. Lectures at the 1975 International School of Subnuclear Physics ?Ettore Majorana? (Erice), in ?New Phenomena in Subnuclear Physics,? Zichichi A. (ed.). New York: Plenum Press, 1977
[3] Hepp, K.: Comm. Math. Phys.35, 265 (1974)
[4] Benjamin, T. B.: Proc. R. Soc. (London)A328, 153 (1972)
[5] Bona, J. L.: Proc. R. Soc. (London)A344, 363 (1975)
[6] Scharf, G., Wreszinski, W. F.: Ann. Phys. (N.Y.)134, 56 (1981) · Zbl 0471.35008
[7] Derrick, G.: J. Math. Phys.5, 1252 (1964)
[8] Strauss, W.: Nonlinear invariant wave equations. In: Invariant Wave Equations, Velo, G., Wightman, A. S. (eds.), Berlin, Heidelberg, New York: Springer 1977
[9] Dunford, N., Schwartz, J.: Linear operators, Vol. II. New York: Interscience 1963 · Zbl 0128.34803
[10] Martin, R. H.: Nonlinear operators and differential equations in Banach spaces. New York: Wiley 1976 · Zbl 0333.47023
[11] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV. New York: Academic Press 1978 · Zbl 0401.47001
[12] Parenti, C., Strocchi, F., Velo, G.: In: Invariant Wave Equations, Velo, G., Wightman, A. S.: (eds.), Berlin, Heidelberg, New York: Springer 1977, and Commun. Math. Phys.53, 65 (1977) · Zbl 0355.35062
[13] Parenti, C., Strocchi, F., Velo, G.: Dynamical charges and symmetries in non-linear classical field theory. Bielefeld Preprint
[14] Chernoff, P. R., Marsden, J. E.: properties of infinite dimensional Hamiltonian systems. Berlin, Heidelberg, New York: Springer 1974 · Zbl 0301.58016
[15] Marsden, J., McCracken, M.: The Hopf bifurcation and its applications. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0346.58007
[16] Henry, Daniel B.: Stability and instability by the linear approximation, Proc. of the 12th. Brazilian Analysis Seminar (Soc. Bras. de Matematica, Rio de Janeiro)
[17] Strauss, W. A.: Commun. Math. Phys.55, 149 (1977) · Zbl 0356.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.