zbMATH — the first resource for mathematics

Large volume limit of the distribution of characteristic exponents in turbulence. (English) Zbl 0546.76083
The author considers a turbulent viscous flow and obtains rigorous upper bounds on the distribution of characteristic exponents in terms of dissipation. Despite the phenomenon of intermittancy for such flows, the bounds have a good large volume behavior as a characteristic exponent density should exist for spatially extended conservation or dissipative physical system.
For two-dimensional fluids the result shows that the total information creation is bounded above by a fixed multiple of the total energy dissipation at fixed viscosity.
For an intermittent model of turbulence the distribution of the characteristic exponents is estimated. A change in behavior is found to occur at the value of 2.6 of the self-similarity dimension.
Reviewer: S.Carmi

76F99 Turbulence
Full Text: DOI
[1] Betchov, R.: An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech.1, 497-504 (1956) · Zbl 0071.40603
[2] Brachet, M.: Intégration numérique des équations de Navier-Stokes en régime de turbulence développée. C.R. Acad. Sci. Paris294, Série II, 537-540 (1982) · Zbl 0489.76045
[3] Chorin, A.J.: The evolution of a turbulent vortex. Commun. Math. Phys.83, 517-535 (1982) · Zbl 0494.76024
[4] Douady, A., Oesterlé, J.: Dimension de Hausdorff des attracteurs. C.R. Acad. Sci. Paris290 A, 1135-1138 (1980) · Zbl 0443.58016
[5] Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman lectures on physics. Reading, Mass.: Addison-Wesley 1963(I), 1964(II), 1965(III)
[6] Foias, C., Temam, R.: Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J. Math. Pure Appl.58, 339-368 (1979) · Zbl 0454.35073
[7] Frisch, U., Sulem, P.-L., Nelkin, M.: A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech.87, 719-736 (1978) · Zbl 0395.76051
[8] Fujisaka, H., Mori, H.: A maximum principle for determining the intermittency exponent of fully developed steady turbulence. Progr. Theor. Phys.62, 54-60 (1979) · Zbl 1098.82503
[9] Girault, V., Raviart, P.-A.: Finite element approximation of the Navier-Stokes equation. In: Lecture Notes in Mathematics, Vol. 749. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0413.65081
[10] Kraichnan, R.H.: On Kolmogorov’s inertial-range theories. J. Fluid Mech.62, 305-330 (1974) · Zbl 0273.76037
[11] Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow (2nd ed.). Moscow: Nauka, 1970 [2nd english ed. New York: Gordon and Breach 1969] · Zbl 0184.52603
[12] Ledrappier, F.: Some relations between dimension and Lyapounov exponents. Commun. Math. Phys.81, 229-238 (1981) · Zbl 0486.58021
[13] Leith, C.: Chaos and order in wheather prediction. Order in chaos (Los Alamos, 1982) North-Holland (to be published)
[14] Lieb, E., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger equation and their relation to Sobolev inequalities. In: Studies in Mathematical Physics: Essays in honor of Valentine Bargman, Lieb, E., Simon, B., Wightman, A.S. (eds.), pp. 269-303. Princeton, NJ: Princeton University Press 1976 · Zbl 0342.35044
[15] Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non-linéaires. Paris 1969
[16] Mallet-Paret, J.: Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Diff. Eq.22, 331-348 (1976) · Zbl 0354.34072
[17] Mandelbrot, B.: Intermittent turbulence and fractal dimension: kurtosis and the spectral exponent 5/3 +B. In: Turbulence and the Navier-Stokes equations. Lecture Notes in Mathematics, Vol. 565, pp. 121-145. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0372.76043
[18] Mañé, R.: On the dimension of the compact invariant sets of certain nonlinear maps (preprint)
[19] Mañé, R.: Lyapounov exponents and stable manifolds for compact transformations (preprint)
[20] Monin, A.S., Yaglom, A.M.: Statistical fluid mechanics: mechanics of turbulence. Moscow: Nauka, 1965 [english transl.: 2 Vol. (ed. by J. L. Lumley). Cambridge, Mass.: MIT Press 1971 and 1975]
[21] Novikov, E.A., Steward, R.W.: Intermittency of turbulence and the spectrum of fluctuations of energy dissipation. Izv. Akad. Nauk SSSR Ser. Geofiz.3, 408-413 (1964)
[22] Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Tr. Moskov Mat. Ob??.19, 179-210 (1968) [english transl.: Transl. Moscow Math. Soc.19, 197-221 (1968)]
[23] Raghunathan, M.S.: A proof of Oseledec’ multiplicative ergodic theorem. Israel J. Math.32, 356-362 (1979) · Zbl 0415.28013
[24] Reed, M., Simon, B.: Methods of modern mathematical physics. New York: Academic Press 1972(I), 1975(II), 1979(III), 1978(IV) · Zbl 0242.46001
[25] Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat.9, 83-87 (1978) · Zbl 0432.58013
[26] Ruelle, D.: What are the measures describing turbulence? Progr. Theor. Phys. Suppl.64, 339-345 (1978)
[27] Ruelle, D.: Microscopic fluctuations and turbulence. Phys. Lett.72A, 81-82 (1979)
[28] Ruelle, D.: Measures describing a turbulent flow. Ann. N.Y. Acad. Sci.357, 1-9 (1980) · Zbl 0474.76056
[29] Ruelle, D.: Characteristic exponents and invariant manifolds in Hilbert space. Ann. Math.115, 243-290 (1982) · Zbl 0493.58015
[30] Shaw, R.: Strange attractors, chaotic behavior, and information flow. Santa Cruz Preprint (1977)
[31] Siggia, E.: Invariants for the one-point vorticity and strain rate correlation functions. Phys. Fluids24, 1934-1936 (1981) · Zbl 0471.76063
[32] Sinai, Ya.G.: On the entropy per particle for the dynamical system of hard spheres (preprint)
[33] Temam, R.: Navier-Stokes equations. Revised edition. Amsterdam: North-Holland 1979 · Zbl 0426.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.