Non-unicité des solutions d’une équation d’évolution non- linéaire. (French) Zbl 0553.35046

Author’s summary: We prove a non-uniqueness result for a semi-linear parabolic equation. If \(\gamma >1\) and N an integer such that \(1<N(\gamma -1)/2<\inf (\gamma,(\gamma +3)/2))\) and \(\Omega\) is a ball of \({\mathbb{R}}^ N\), then the equation \(\partial u/\partial t-\Delta u=u| u|^{\gamma -1},\quad u(0)=u_ 0,\quad u|_{\partial \Omega}=0\) possesses an infinite number of solutions such that \(\lim_{t\to 0}\| u(t)-u_ 0\|_ q=0\) where \(1\leq q<N(\gamma - 1)/2\).
Reviewer: R.Badescu


35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
Full Text: DOI Numdam EuDML


[1] Baras, P.. «Compacité de l’opérateur f → u solution d’une équation non linéaire (du/dt) + Au ∋ f». Note au C.R.A.S., t. 286, série A, (1978), p. 1113-1116. · Zbl 0389.47030
[2] Haraux, A., Weissler, F.B.. «Non-uniqueness for a semi-linear initial value problem». Indiana University Mathematics Journal, vol. 31, n° 2, (1982), p. 167-189. · Zbl 0465.35049
[3] Haraux, A., Kirane, M.. «Estimations C1 pour des problèmes paraboliques semi-linéaires». Université Pierre et Marie Curie. ParisV. · Zbl 0494.35054
[4] Weissler, F.B.. «Local existence and non-existence for semilinear parabolic equations in Lp». Indiana University Mathematics Journal, vol. 29, n° 1, (1980), p. 79-102. · Zbl 0443.35034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.